scispace - formally typeset
Search or ask a question
Author

Wangxia Wang

Other affiliations: Weizmann Institute of Science
Bio: Wangxia Wang is an academic researcher from Hebrew University of Jerusalem. The author has contributed to research in topics: Abiotic stress & Basal shoot. The author has an hindex of 12, co-authored 18 publications receiving 5728 citations. Previous affiliations of Wangxia Wang include Weizmann Institute of Science.

Papers
More filters
Journal ArticleDOI
26 Sep 2003-Planta
TL;DR: The present review summarizes the recent advances in elucidating stress-response mechanisms and their biotechnological applications and examines the following aspects: regulatory controls, metabolite engineering, ion transport, antioxidants and detoxification, late embryogenesis abundant (LEA) and heat-shock proteins.
Abstract: Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity and oxidative stress are serious threats to agriculture and the natural status of the environment. Increased salinization of arable land is expected to have devastating global effects, resulting in 30% land loss within the next 25 years, and up to 50% by the year 2050. Therefore, breeding for drought and salinity stress tolerance in crop plants (for food supply) and in forest trees (a central component of the global ecosystem) should be given high research priority in plant biotechnology programs. Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. These genes are involved in the whole sequence of stress responses, such as signaling, transcriptional control, protection of membranes and proteins, and free-radical and toxic-compound scavenging. Recently, research into the molecular mechanisms of stress responses has started to bear fruit and, in parallel, genetic modification of stress tolerance has also shown promising results that may ultimately apply to agriculturally and ecologically important plants. The present review summarizes the recent advances in elucidating stress-response mechanisms and their biotechnological applications. Emphasis is placed on transgenic plants that have been engineered based on different stress-response mechanisms. The review examines the following aspects: regulatory controls, metabolite engineering, ion transport, antioxidants and detoxification, late embryogenesis abundant (LEA) and heat-shock proteins.

3,248 citations

Journal ArticleDOI
TL;DR: The significance of Hsps and chaperones in abiotic stress responses in plants is summarized, and the co-operation among their different classes and their interactions with other stress-induced components are discussed.

2,309 citations

Journal ArticleDOI
TL;DR: A positive correlation between increased water stress tolerance of one poplar species as compared with another and accumulation of water stress-related proteins and sucrose synthase is found.
Abstract: Proteins inducible by dehydration and abscisic acid (ABA), have been identified in a number of species and have been suggested to play a role in desiccation tolerance. Recently, we identified a novel boiling-stable protein (BspA) which accumulated in shoots of aspen (Populus tremula L.) cultured in vitro, in response to gradual water stress and ABA application (Pelah et al. 1995. Tree Physiol. 15: 673–678.). Accumulation of BspA, and of the water stress-related protein dehydrin dsp- 16 and sucrose synthase from the resurrection plant. Craterostigma plantagineum, was examined in two greenhouse-grown Populus species to investigate the relationship between the presence of the proteins and water stress tolerance. Detached leaves of Populus tomentosa lost more water than Populus popularis, resulting in a significant decrease in leaf water potential. Using electrolyte leakage analysis, it was found that detached leaves of Populus popularis are more tolerant to water stress than those of Populus tomentosa. Using western blots with the corresponding antibodies, we have found in Populus popularis accumulation of BspA and sucrose synthase due to water stress, and the constitutive presence of a dehydrin-like protein. In contrast, a low expression of BspA was found in Populus tomentosa, but not of sucrose synthase and dehydrin-like proteins. Desiccation tolerance in many tissues can be partly attributed to soluble sugars. Analysis of the amount of soluble sugars did not reveal clear-cut differences between the two species, except for significant sucrose accumulation and glucose reduction in water-stressed Populus tomentosa and increase in glucose in water-stressed Populus popularis. The data obtained points to a positive correlation between increased water stress tolerance of one poplar species as compared with another and accumulation of water stress-related proteins and sucrose synthase.

130 citations

Journal ArticleDOI
TL;DR: The cloning, isolation, and characterization of SP1, a stress-responsive, boiling-soluble, oligomeric protein, is presented, the first report on this putative protein family.
Abstract: sp1 cDNA was isolated from aspen (Populus tremula) plants by immunoscreening an expression library using polyclonal antibodies against BspA protein. BspA, which is a boiling-stable protein, accumulates in aspen plants in response to water stress and abscisic acid application (Pelah et al., 1995). The sp1 cDNA was found to encode a 12.4-kD generally hydrophilic protein with a hydrophobic C terminus, which is different from the BspA protein and was termed SP1 (stable protein 1). Northern-blot analysis revealed that sp1 encodes a small mRNA (about 0.6 kb) that is expressed in aspen plants under non-stress conditions and is accumulated after salt, cold, heat, and desiccation stress, and during the recovery from stress. The SP1 detected in plants remained soluble upon boiling, migrated both as a 12.4-kD band and a much higher mass of 116 kD on a 17% (w/v) Tricine-sodium dodecyl sulfate-polyacrylamide gel. Comparative protease digestion patterns, amino acid analyses, and the N-terminal sequences of the 12.4- and 116-kD proteins revealed that SP1 is homo-oligomeric. Furthermore, gel filtration chromatography analysis indicated that SP1 exists in aspen plants as a complex, composed of 12 subunits of 12.4 kD. A large number of sequences deduced from expressed sequence tags and genomic sequences of other organisms with unknown function show high homology to SP1. Thus, SP1 may represent a new protein family. Here, we present the first report on this putative protein family: the cloning, isolation, and characterization of SP1, a stress-responsive, boiling-soluble, oligomeric protein.

91 citations


Cited by
More filters
Journal ArticleDOI
26 Sep 2003-Planta
TL;DR: The present review summarizes the recent advances in elucidating stress-response mechanisms and their biotechnological applications and examines the following aspects: regulatory controls, metabolite engineering, ion transport, antioxidants and detoxification, late embryogenesis abundant (LEA) and heat-shock proteins.
Abstract: Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity and oxidative stress are serious threats to agriculture and the natural status of the environment. Increased salinization of arable land is expected to have devastating global effects, resulting in 30% land loss within the next 25 years, and up to 50% by the year 2050. Therefore, breeding for drought and salinity stress tolerance in crop plants (for food supply) and in forest trees (a central component of the global ecosystem) should be given high research priority in plant biotechnology programs. Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. These genes are involved in the whole sequence of stress responses, such as signaling, transcriptional control, protection of membranes and proteins, and free-radical and toxic-compound scavenging. Recently, research into the molecular mechanisms of stress responses has started to bear fruit and, in parallel, genetic modification of stress tolerance has also shown promising results that may ultimately apply to agriculturally and ecologically important plants. The present review summarizes the recent advances in elucidating stress-response mechanisms and their biotechnological applications. Emphasis is placed on transgenic plants that have been engineered based on different stress-response mechanisms. The review examines the following aspects: regulatory controls, metabolite engineering, ion transport, antioxidants and detoxification, late embryogenesis abundant (LEA) and heat-shock proteins.

3,248 citations

Journal ArticleDOI
TL;DR: C crop heat tolerance can be enhanced by preconditioning of plants under different environmental stresses or exogenous application of osmoprotectants such as glycinebetaine and proline, and by traditional and contemporary molecular breeding protocols and transgenic approaches.

3,037 citations

Journal ArticleDOI
TL;DR: Various factors pertaining to cold acclimation, promoter elements, and role of transcription factors in stress signaling pathway have been described, and the role of calcium as an important signaling molecule in response to various stress signals has been covered.

2,626 citations

Journal ArticleDOI
TL;DR: This review lists some candidate genes for salinity tolerance, and draws together hypotheses about the functions of these genes and the specific tissues in which they might operate.
Abstract: Salinity tolerance comes from genes that limit the rate of salt uptake from the soil and the transport of salt throughout the plant, adjust the ionic and osmotic balance of cells in roots and shoots, and regulate leaf development and the onset of senescence. This review lists some candidate genes for salinity tolerance, and draws together hypotheses about the functions of these genes and the specific tissues in which they might operate. Little has been revealed by gene expression studies so far, perhaps because the studies are not tissue-specific, and because the treatments are often traumatic and unnatural. Suggestions are made to increase the value of molecular studies in identifying genes that are important for salinity tolerance.

2,625 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations