scispace - formally typeset
Search or ask a question
Author

Ward Van Heddeghem

Bio: Ward Van Heddeghem is an academic researcher from Ghent University. The author has contributed to research in topics: Energy consumption & Efficient energy use. The author has an hindex of 15, co-authored 29 publications receiving 1486 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper assesses how ICT electricity consumption in the use phase has evolved from 2007 to 2012 based on three main ICT categories: communication networks, personal computers, and data centers to find that the absolute electricity consumption of each of the three categories is still roughly equal.

462 citations

Journal ArticleDOI
TL;DR: This work proposes reference power consumption values for Internet protocol/multiprotocol label switching, Ethernet, optical transport networking and wavelength division multiplexing equipment and presents a simplified analytical power consumption model that can be used for large networks where simulation is computationally expensive or unfeasible.
Abstract: The evaluation of and reduction in energy consumption of backbone telecommunication networks has been a popular subject of academic research for the last decade. A critical parameter in these studies is the power consumption of the individual network devices. It appears that across different studies, a wide range of power values for similar equipment is used. This is a result of the scattered and limited availability of power values for optical multilayer network equipment. We propose reference power consumption values for Internet protocol/multiprotocol label switching, Ethernet, optical transport networking and wavelength division multiplexing equipment. In addition we present a simplified analytical power consumption model that can be used for large networks where simulation is computationally expensive or unfeasible. For illustration and evaluation purpose, we apply both calculation approaches to a case study, which includes an optical bypass scenario. Our results show that the analytical model approximates the simulation result to over 90% or higher and that optical bypass potentially can save up to 50% of power over a non-bypass scenario.

245 citations

Journal ArticleDOI
TL;DR: The power consumption in the different types of networks is characterized and strategies to reduce the power consumption are discussed.
Abstract: One of the main challenges for the future of information and communication technologies is reduction of the power consumption in telecommunication networks. The key consumers are the home gateways at the customer premises for fixed line access technologies and the base stations for wireless access technologies. However, with increasing bit rates, the share of the core networks could become significant as well. In this article we characterize the power consumption in the different types of networks and discuss strategies to reduce the power consumption.

235 citations

Journal ArticleDOI
TL;DR: The results show that the network electricity consumption is growing fast, at a rate of 10 % per year, and its relative contribution to the total worldwide electricity consumption has increased from 1.3% in 2007 to 1.8% in 2012.
Abstract: There is a growing research interest in improving the energy efficiency of communication networks In order to assess the impact of introducing new energy efficient technologies, an up-to-date estimate for the global electricity consumption in communication networks is needed In this paper we consider the use phase electricity consumption of telecom operator networks, office networks and customer premises equipment Our results show that the network electricity consumption is growing fast, at a rate of 10 % per year, and its relative contribution to the total worldwide electricity consumption has increased from 13% in 2007 to 18% in 2012 We estimate the worldwide electricity consumption of communication networks will exceed 350 TWh in 2012

178 citations

Proceedings ArticleDOI
03 Mar 2010
TL;DR: This paper gives an overview of the environmental issues related to communication technologies en present an estimation of the overall ICT footprint and some approaches on how to reduce this footprint and how ICT can assist in other sectors reducing their footprint.
Abstract: Green communication technologies currently receive a lot of attention. In this paper we give an overview of the environmental issues related to communication technologies en present an estimation of the overall ICT footprint. Additionally we present some approaches on how to reduce this footprint and how ICT can assist in other sectors reducing their footprint.

136 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computing offloading.
Abstract: Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation demands from mobile applications. By offloading the computationally intensive workloads to the MEC server, the quality of computation experience, e.g., the execution latency, could be greatly improved. Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when the battery energy runs out. To provide satisfactory computation performance as well as achieving green computing, it is of significant importance to seek renewable energy sources to power mobile devices via energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH devices and develop an effective computation offloading strategy. The execution cost , which addresses both the execution latency and task failure, is adopted as the performance metric. A low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computation offloading. A unique advantage of this algorithm is that the decisions depend only on the current system state without requiring distribution information of the computation task request, wireless channel, and EH processes. The implementation of the algorithm only requires to solve a deterministic problem in each time slot, for which the optimal solution can be obtained either in closed form or by bisection search. Moreover, the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation results shall be presented to corroborate the theoretical analysis as well as validate the effectiveness of the proposed algorithm.

1,385 citations

01 Jan 2011
TL;DR: It is shown thatEnergy consumption in transport and switching can be a significant percentage of total energy consumption in cloud computing, and considers both public and private clouds, and includes energy consumption of the transmission and switching networks.
Abstract: Network-based cloud computing is rapidly expanding as an alternative to conventional office-based computing. As cloud computing becomes more widespread, the energy consumption of the network and computing resources that underpin the cloud will grow. This is happening at a time when there is increasing attention being paid to the need to manage energy consumption across the entire information and communications technology (ICT) sector. While data center energy use has received much attention recently, there has been less attention paid to the energy consumption of the transmission and switching networks that are key to connecting users to the cloud. In this paper, we present an analysis of energy consumption in cloud computing. The analysis considers both public and private clouds, and includes energy consumption in switching and transmission as well as data processing and data storage. We show that energy consumption in transport and switching can be a significant percentage of total energy consumption in cloud computing. Cloud computing can enable more energy-efficient use of computing power, especially when the computing tasks are of low intensity or infrequent. However, under some circum- stances cloud computing can consume more energy than conventional computing where each user performs all com- puting on their own personal computer (PC).

748 citations

Journal ArticleDOI
TL;DR: An in-depth study of the existing literature on data center power modeling, covering more than 200 models, organized in a hierarchical structure with two main branches focusing on hardware-centric and software-centric power models.
Abstract: Data centers are critical, energy-hungry infrastructures that run large-scale Internet-based services. Energy consumption models are pivotal in designing and optimizing energy-efficient operations to curb excessive energy consumption in data centers. In this paper, we survey the state-of-the-art techniques used for energy consumption modeling and prediction for data centers and their components. We conduct an in-depth study of the existing literature on data center power modeling, covering more than 200 models. We organize these models in a hierarchical structure with two main branches focusing on hardware-centric and software-centric power models. Under hardware-centric approaches we start from the digital circuit level and move on to describe higher-level energy consumption models at the hardware component level, server level, data center level, and finally systems of systems level. Under the software-centric approaches we investigate power models developed for operating systems, virtual machines and software applications. This systematic approach allows us to identify multiple issues prevalent in power modeling of different levels of data center systems, including: i) few modeling efforts targeted at power consumption of the entire data center ii) many state-of-the-art power models are based on a few CPU or server metrics, and iii) the effectiveness and accuracy of these power models remain open questions. Based on these observations, we conclude the survey by describing key challenges for future research on constructing effective and accurate data center power models.

741 citations

Journal ArticleDOI
01 Jan 2011
TL;DR: In this paper, the authors present an analysis of energy consumption in cloud computing, considering both public and private clouds, and include energy consumption of switching and transmission as well as data processing and data storage.
Abstract: Network-based cloud computing is rapidly expanding as an alternative to conventional office-based computing. As cloud computing becomes more widespread, the energy consumption of the network and computing resources that underpin the cloud will grow. This is happening at a time when there is increasing attention being paid to the need to manage energy consumption across the entire information and communications technology (ICT) sector. While data center energy use has received much attention recently, there has been less attention paid to the energy consumption of the transmission and switching networks that are key to connecting users to the cloud. In this paper, we present an analysis of energy consumption in cloud computing. The analysis considers both public and private clouds, and includes energy consumption in switching and transmission as well as data processing and data storage. We show that energy consumption in transport and switching can be a significant percentage of total energy consumption in cloud computing. Cloud computing can enable more energy-efficient use of computing power, especially when the computing tasks are of low intensity or infrequent. However, under some circumstances cloud computing can consume more energy than conventional computing where each user performs all computing on their own personal computer (PC).

704 citations

Journal ArticleDOI
TL;DR: An estimation of the global electricity usage that can be ascribed to Communication Technology between 2010 and 2030 suggests that CT electricity usage could contribute up to 23% of the globally released greenhouse gas emissions in 2030.
Abstract: This work presents an estimation of the global electricity usage that can be ascribed to Communication Technology (CT) between 2010 and 2030. The scope is three scenarios for use and production of consumer devices, communication networks and data centers. Three different scenarios, best, expected, and worst, are set up, which include annual numbers of sold devices, data traffic and electricity intensities/efficiencies. The most significant trend, regardless of scenario, is that the proportion of use-stage electricity by consumer devices will decrease and will be transferred to the networks and data centers. Still, it seems like wireless access networks will not be the main driver for electricity use. The analysis shows that for the worst-case scenario, CT could use as much as 51% of global electricity in 2030. This will happen if not enough improvement in electricity efficiency of wireless access networks and fixed access networks/data centers is possible. However, until 2030, globally-generated renewable electricity is likely to exceed the electricity demand of all networks and data centers. Nevertheless, the present investigation suggests, for the worst-case scenario, that CT electricity usage could contribute up to 23% of the globally released greenhouse gas emissions in 2030.

644 citations