scispace - formally typeset
Search or ask a question
Author

Warner J. Venstra

Bio: Warner J. Venstra is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Resonator & Cantilever. The author has an hindex of 21, co-authored 52 publications receiving 1471 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Clear signatures of nonlinear resonance in these atomically thin resonators are demonstrated and these resonators behave as membranes with resonance frequencies in between 10 and 30 MHz and quality factors in between 16 and 109.
Abstract: Mechanical resonators are fabricated from freely suspended single-layer MoS2 . Their dynamics have been studied by optical interferometry. These resonators behave as membranes with resonance frequencies in between 10 and 30 MHz and quality factors in between 16 and 109. We also demonstrate clear signatures of nonlinear resonance in these atomically thin resonators.

220 citations

Journal ArticleDOI
TL;DR: The observed complex nonlinear dynamics are quantitatively captured by a model based on coupling of the modes via the beam extension; the same mechanism is responsible for the well-known Duffing nonlinearity in clamped-clamped beams.
Abstract: A theoretical and experimental investigation is presented on the intermodal coupling between the flexural vibration modes of a single clamped-clamped beam. Nonlinear coupling allows an arbitrary flexural mode to be used as a self-detector for the amplitude of another mode, presenting a method to measure the energy stored in a specific resonance mode. The observed complex nonlinear dynamics are quantitatively captured by a model based on coupling of the modes via the beam extension; the same mechanism is responsible for the well-known Duffing nonlinearity in clamped-clamped beams.

212 citations

Journal ArticleDOI
TL;DR: In this paper, the effective Young's modulus of silicon nitride cantilevers is determined for thicknesses in the range of 20-684 nm by measuring resonance frequencies from thermal noise spectra.
Abstract: The effective Young’s modulus of silicon nitride cantilevers is determined for thicknesses in the range of 20–684 nm by measuring resonance frequencies from thermal noise spectra. A significant deviation from the bulk value is observed for cantilevers thinner than 150 nm. To explain the observations we have compared the thickness dependence of the effective Young’s modulus for the first and second flexural resonance mode and measured the static curvature profiles of the cantilevers. We conclude that surface stress cannot explain the observed behavior. A surface elasticity model fits the experimental data consistently.

142 citations

Journal ArticleDOI
TL;DR: This work probes the motion of graphene nanodrum resonators with spatial resolution using a phase-sensitive interferometer and shows that unexplained spectral features represent split degenerate modes, which is crucial for reproducible fabrication and applications.
Abstract: Membranes of suspended two-dimensional materials show a large variability in mechanical properties, in part due to static and dynamic wrinkles. As a consequence, experiments typically show a multitude of nanomechanical resonance peaks, which make an unambiguous identification of the vibrational modes difficult. Here, we probe the motion of graphene nanodrum resonators with spatial resolution using a phase-sensitive interferometer. By simultaneously visualizing the local phase and amplitude of the driven motion, we show that unexplained spectral features represent split degenerate modes. When taking these into account, the resonance frequencies up to the eighth vibrational mode agree with theory. The corresponding displacement profiles, however, are remarkably different from theory, as small imperfections increasingly deform the nodal lines for the higher modes. The Brownian motion, which is used to calibrate the local displacement, exhibits a similar mode pattern. The experiments clarify the complicated dynamic behavior of suspended two-dimensional materials, which is crucial for reproducible fabrication and applications.

95 citations

Journal ArticleDOI
TL;DR: In this paper, double clamped beams are used to implement a mechanical memory and compressive stress is generated by resistive heating of the beams and beyond the buckling limit the bistable regime is accessed.
Abstract: We have used double clamped beams to implement a mechanical memory. Compressive stress is generated by resistive heating of the beams and beyond the buckling limit the bistable regime is accessed. Bits are written by applying lateral electrostatic forces. The state of the beam is read out by measuring the capacitance between beam and electrodes. Two ways to implement a mechanical memory are discussed: compensation of initial beam imperfections and snap through of the postbuckled beam. Although significant relaxation effects are observed, both methods prove reliable over thousands of write cycles.

77 citations


Cited by
More filters
Journal ArticleDOI
04 Apr 2014
TL;DR: In this paper, the authors developed an all-dry transfer method that relies on viscoelastic stamps and does not employ any wet chemistry step, which is found to be very advantageous to freely suspend these materials as there are no capillary forces involved in the process.
Abstract: The deterministic transfer of two-dimensional crystals constitutes a crucial step towards the fabrication of heterostructures based on the artificial stacking of two-dimensional materials. Moreover, controlling the positioning of two-dimensional crystals facilitates their integration in complex devices, which enables the exploration of novel applications and the discovery of new phenomena in these materials. To date, deterministic transfer methods rely on the use of sacrificial polymer layers and wet chemistry to some extent. Here, we develop an all-dry transfer method that relies on viscoelastic stamps and does not employ any wet chemistry step. This is found to be very advantageous to freely suspend these materials as there are no capillary forces involved in the process. Moreover, the whole fabrication process is quick, efficient, clean and it can be performed with high yield.

1,517 citations

Posted Content
TL;DR: In this paper, the authors developed an all-dry deterministic transfer method that relies on viscoelastic stamps and does not employ any wet chemistry step, which is found very advantageous to freely suspend these materials as there are no capillary forces involved in the process.
Abstract: Deterministic transfer of two-dimensional crystals constitutes a crucial step towards the fabrication of heterostructures based on artificial stacking of two-dimensional materials. Moreover, control on the positioning of two-dimensional crystals facilitates their integration in complex devices, which enables the exploration of novel applications and the discovery of new phenomena in these materials. Up to date, deterministic transfer methods rely on the use of sacrificial polymer layers and wet chemistry to some extent. Here, we develop an all-dry transfer method that relies on viscoelastic stamps and does not employ any wet chemistry step. This is found very advantageous to freely suspend these materials as there are no capillary forces involved in the process. Moreover, the whole fabrication process is quick, efficient, clean, and it can be performed with high yield.

883 citations

Journal ArticleDOI
TL;DR: In this article, the basic modes of operation in cantilever-like micromechanical sensors and optical and electrical means for signal transduction are discussed with focus on silicon-and polymer-based technologies.
Abstract: The field of cantilever-based sensing emerged in the mid-1990s and is today a well-known technology for label-free sensing which holds promise as a technique for cheap, portable, sensitive and highly parallel analysis systems. The research in sensor realization as well as sensor applications has increased significantly over the past 10 years. In this review we will present the basic modes of operation in cantilever-like micromechanical sensors and discuss optical and electrical means for signal transduction. The fundamental processes for realizing miniaturized cantilevers are described with focus on silicon- and polymer-based technologies. Examples of recent sensor applications are given covering such diverse fields as drug discovery, food diagnostics, material characterizations and explosives detection.

525 citations

Journal ArticleDOI
TL;DR: In this paper, the authors quantitatively study the Raman and photoluminescence (PL) emission from single-layer molybdenum disulfide (MoS2) on dielectric (SiO2, hexagonal boron nitride, mica and polymeric dielectrics Gel-Film®) and conducting substrates (Au and few-layer graphene).
Abstract: We quantitatively study the Raman and photoluminescence (PL) emission from single-layer molybdenum disulfide (MoS2) on dielectric (SiO2, hexagonal boron nitride, mica and the polymeric dielectric Gel-Film®) and conducting substrates (Au and few-layer graphene). We find that the substrate can affect the Raman and PL emission in a twofold manner. First, the absorption and emission intensities are strongly modulated by the constructive/destructive interference within the different substrates. Second, the position of the A1g Raman mode peak and the spectral weight between neutral and charged excitons in the PL spectra are modified by the substrate. We attribute this effect to substrate-induced changes in the doping level and in the decay rates of the excitonic transitions. Our results provide a method to quantitatively study the Raman and PL emission from MoS2-based vertical heterostructures and represent the first step in ad hoc tuning the PL emission of 1L MoS2 by selecting the proper substrate.

509 citations

Journal ArticleDOI
TL;DR: MoS2 transistors showed for the first time that devices based on MoS2 and related TMDs could have electrical properties on the same level as other, more established semiconducting materials, and demonstrations of basic digital circuits and transistors operating in the technologically relevant gigahertz range of frequencies showed that the mobility of MoS 2 and TMD materials is sufficiently high to allow device operation at such high frequencies.
Abstract: ConspectusAtomic crystals of two-dimensional materials consisting of single sheets extracted from layered materials are gaining increasing attention. The most well-known material from this group is graphene, a single layer of graphite that can be extracted from the bulk material or grown on a suitable substrate. Its discovery has given rise to intense research effort culminating in the 2010 Nobel Prize in physics awarded to Andre Geim and Konstantin Novoselov. Graphene however represents only the proverbial tip of the iceberg, and increasing attention of researchers is now turning towards the veritable zoo of so-called “other 2D materials”. They have properties complementary to graphene, which in its pristine form lacks a bandgap: MoS2, for example, is a semiconductor, while NbSe2 is a superconductor. They could hold the key to important practical applications and new scientific discoveries in the two-dimensional limit. This family of materials has been studied since the 1960s, but most of the research fo...

409 citations