scispace - formally typeset
Search or ask a question
Author

Warren H. Meck

Bio: Warren H. Meck is an academic researcher from Duke University. The author has contributed to research in topics: Time perception & Choline. The author has an hindex of 85, co-authored 214 publications receiving 26897 citations. Previous affiliations of Warren H. Meck include Columbia University & Brown University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that the brain represents time in a distributed manner and tells the time by detecting the coincidental activation of different neural populations.
Abstract: Time is a fundamental dimension of life. It is crucial for decisions about quantity, speed of movement and rate of return, as well as for motor control in walking, speech, playing or appreciating music, and participating in sports. Traditionally, the way in which time is perceived, represented and estimated has been explained using a pacemaker-accumulator model that is not only straightforward, but also surprisingly powerful in explaining behavioural and biological data. However, recent advances have challenged this traditional view. It is now proposed that the brain represents time in a distributed manner and tells the time by detecting the coincidental activation of different neural populations.

1,814 citations

Journal ArticleDOI
TL;DR: The generalized account proposed here will develop the conclusion that scalar sources dominate in some time ranges, while other sources may dominate in others, and are applied to two additional timing tasks with different characteristics.
Abstract: A recent report of ours’ proposed an information-processing account of temporal generalization. The account posited a clock process, which was the basic time measurement device, and working and reference memory for storing the output of the clock either temporarily or relatively permanently. Records of time intervals in working and reference memory were then compared using a binary decision process, which dictated responding or not responding. The analysis concentrated on a relativistic Weber’s law property of the data from temporal generalization, and the constraints this property imposed on sources of variance in the information-processing stages. Our purpose here is to summarize that work and generalize the model in two ways: First we consider several sources of variance operating simultaneously. The original analysis demonstrated that if only one source of variance is present, it must be a scalar source, that is, it must result in a variable memory for which variance increases with the square of the mean.’ In the generalized account proposed here, we will develop the conclusion that scalar sources dominate in some time ranges, while other sources may dominate in others. These ideas are then applied to two additional timing tasks with different characteristics.

1,699 citations

Journal ArticleDOI
TL;DR: The conclusion was that the same internal mechanism is used for counting and timing that can be used in several modes: the "event" mode for counting or the "run" and the "stop" modes for timing.
Abstract: The similarity of animal counting and timing processes was demonstrated in four experiments that used a psychophysical choice procedure. In Experiment 1, rats initially learned a discrimination between a two-cycle auditory signal of 2-sec duration and an eight-cycle auditory signal of 8-sec duration. For the number discrimination test, the number of cycles was varied, and the signal duration was held constant at an intermediate value. For the duration discrimination test, the signal duration was varied, and the number of cycles was held constant at an intermediate value. Rats were equally sensitive to a 4:1 ratio of counts (with duration controlled) and a 4:1 ratio of times (with number controlled). The point of subjective equality for the psychophysical functions that related response classification to signal value was near the geometric mean of the extreme values for both number and duration discriminations. Experiment 2 demonstrated that 1.5 mg/kg of methamphetamine administered intraperitoneally shifted the psychophysical functions for both number and duration leftward by approximately 10%. Experiment 3 demonstrated that the magnitude of cross-modal transfer from auditory signals to cutaneous signals was similar for number and duration. In Experiment 4 the mapping of number onto duration demonstrated that a count was approximately equal to 200 msec. The psychophysical functions for number and duration were fit with a scalar expectancy model with the same parameter values for each attribute. The conclusion was that the same internal mechanism is used for counting and timing. This mechanism can be used in several modes: the "event" mode for counting or the "run" and the "stop" modes for timing.

946 citations

Journal ArticleDOI
Warren H. Meck1
TL;DR: A psychological model of duration discrimination that differentiates the speed of an internal clock used for the registration of current sensory input from the speedOf the memory-storage process used forThe representation of the durations of prior stimulus events has proven useful in integrating these findings.

894 citations

Journal ArticleDOI
TL;DR: The neurobiological properties of the basal ganglia, an area known to be necessary for interval timing and motor control, suggests that this set of structures act as a coincidence detector of cortical and thalamic input.

791 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The role of the hippocampus is considered, which is needed temporarily to bind together distributed sites in neocortex that together represent a whole memory.
Abstract: This article considers the role of the hippocampus in memory function. A central thesis is that work with rats, monkeys, and humans--which has sometimes seemed to proceed independently in 3 separate literatures--is now largely in agreement about the function of the hippocampus and related structures. A biological perspective is presented, which proposes multiple memory systems with different functions and distinct anatomical organizations. The hippocampus (together with anatomically related structures) is essential for a specific kind of memory, here termed declarative memory (similar terms include explicit and relational). Declarative memory is contrasted with a heterogeneous collection of nondeclarative (implicit) memory abilities that do not require the hippocampus (skills and habits, simple conditioning, and the phenomenon of priming). The hippocampus is needed temporarily to bind together distributed sites in neocortex that together represent a whole memory.

5,283 citations

Journal ArticleDOI
TL;DR: New findings suggest a fundamental role for the AIC (and the von Economo neurons it contains) in awareness, and thus it needs to be considered as a potential neural correlate of consciousness.
Abstract: The anterior insular cortex (AIC) is implicated in a wide range of conditions and behaviours, from bowel distension and orgasm, to cigarette craving and maternal love, to decision making and sudden insight. Its function in the re-representation of interoception offers one possible basis for its involvement in all subjective feelings. New findings suggest a fundamental role for the AIC (and the von Economo neurons it contains) in awareness, and thus it needs to be considered as a potential neural correlate of consciousness.

5,279 citations

Journal ArticleDOI
TL;DR: This target article critically examines this "hierarchical prediction machine" approach, concluding that it offers the best clue yet to the shape of a unified science of mind and action.
Abstract: Brains, it has recently been argued, are essentially prediction machines. They are bundles of cells that support perception and action by constantly attempting to match incoming sensory inputs with top-down expectations or predictions. This is achieved using a hierarchical generative model that aims to minimize prediction error within a bidirectional cascade of cortical processing. Such accounts offer a unifying model of perception and action, illuminate the functional role of attention, and may neatly capture the special contribution of cortical processing to adaptive success. This target article critically examines this "hierarchical prediction machine" approach, concluding that it offers the best clue yet to the shape of a unified science of mind and action. Sections 1 and 2 lay out the key elements and implications of the approach. Section 3 explores a variety of pitfalls and challenges, spanning the evidential, the methodological, and the more properly conceptual. The paper ends (sections 4 and 5) by asking how such approaches might impact our more general vision of mind, experience, and agency.

3,640 citations

Journal ArticleDOI
20 Sep 1991-Science
TL;DR: The medial temporal lobe memory system is needed to bind together the distributed storage sites in neocortex that represent a whole memory, but the role of this system is only temporary, as time passes after learning, memory stored in neoc cortex gradually becomes independent of medialporal lobe structures.
Abstract: Studies of human amnesia and studies of an animal model of human amnesia in the monkey have identified the anatomical components of the brain system for memory in the medial temporal lobe and have illuminated its function. This neural system consists of the hippocampus and adjacent, anatomically related cortex, including entorhinal, perirhinal, and parahippocampal cortices. These structures, presumably by virtue of their widespread and reciprocal connections with neocortex, are essential for establishing long-term memory for facts and events (declarative memory). The medial temporal lobe memory system is needed to bind together the distributed storage sites in neocortex that represent a whole memory. However, the role of this system is only temporary. As time passes after learning, memory stored in neocortex gradually becomes independent of medial temporal lobe structures.

3,096 citations

Journal ArticleDOI
15 Oct 2004-Science
TL;DR: The authors examined the neural correlates of time discounting while subjects made a series of choices between monetary reward options that varied by delay to delivery and demonstrated that two separate systems are involved in such decisions.
Abstract: When humans are offered the choice between rewards available at different points in time, the relative values of the options are discounted according to their expected delays until delivery. Using functional magnetic resonance imaging, we examined the neural correlates of time discounting while subjects made a series of choices between monetary reward options that varied by delay to delivery. We demonstrate that two separate systems are involved in such decisions. Parts of the limbic system associated with the midbrain dopamine system, including paralimbic cortex, are preferentially activated by decisions involving immediately available rewards. In contrast, regions of the lateral prefrontal cortex and posterior parietal cortex are engaged uniformly by intertemporal choices irrespective of delay. Furthermore, the relative engagement of the two systems is directly associated with subjects' choices, with greater relative fronto-parietal activity when subjects choose longer term options.

2,581 citations