scispace - formally typeset
Search or ask a question
Author

Warren M. Rohsenow

Bio: Warren M. Rohsenow is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Heat transfer & Nucleate boiling. The author has an hindex of 33, co-authored 88 publications receiving 9170 citations.


Papers
More filters
01 Jan 1997
TL;DR: In this article, the analogy between heat and mass transfer is covered and applied in the analysis of heat transfer by conduction, convection and radiation, and the analysis is performed by using the handbook of numerical heat transfer.
Abstract: Handbook of Numerical Heat Transfer Free Full Download Links from Multiple Mirrors added by DL4W on 2015-04-10 02:13:35. Handbook of heat transfer / editors, W.M. Rohsenow, J.P. Hartnett. Y.I. Cho. m 3rd ed. p. cm. Includes bibliographical references and index. ISBN 0-07053555-8. Students investigate heat transfer by conduction, convection and radiation. The analogy between heat and mass transfer is covered and applied in the analysis.

1,644 citations

Book
22 May 1998
TL;DR: In this paper, the analogy between heat and mass transfer is covered and applied in the analysis of heat transfer by conduction, convection and radiation, and the analysis is performed by using the handbook of numerical heat transfer.
Abstract: Handbook of Numerical Heat Transfer Free Full Download Links from Multiple Mirrors added by DL4W on 2015-04-10 02:13:35. Handbook of heat transfer / editors, W.M. Rohsenow, J.P. Hartnett. Y.I. Cho. m 3rd ed. p. cm. Includes bibliographical references and index. ISBN 0-07053555-8. Students investigate heat transfer by conduction, convection and radiation. The analogy between heat and mass transfer is covered and applied in the analysis.

564 citations

Book
01 Jan 1985
TL;DR: In this article, the authors present a handbook on the fundamentals of heat transfer with a focus on conduction, convection, and radiation properties of materials, and provide a discussion of the relationship between convection and heat transfer.
Abstract: This handbook is on the fundamentals of heat transfer. It provides coverage on conduction, convection, and radiation and on thermophysical properties of materials.

549 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid and concluded that only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids.
Abstract: Nanofluids are engineered colloids made of a base fluid and nanoparticles (1-100 nm) Nanofluids have higher thermal conductivity' and single-phase heat transfer coefficients than their base fluids In particular the heat transfer coefficient increases appear to go beyond the mere thermal-conductivity effect, and cannot be predicted by traditional pure-fluid correlations such as Dittus-Boelter's In the nanofluid literature this behavior is generally attributed to thermal dispersion and intensified turbulence, brought about by nanoparticle motion To test the validity of this assumption, we have considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid These are inertia, Brownian diffusion, thermophoresis, diffusioplwresis, Magnus effect, fluid drainage, and gravity We concluded that, of these seven, only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids Based on this finding, we developed a two-component four-equation nonhomogeneous equilibrium model for mass, momentum, and heat transport in nanofluids A nondimensional analysis of the equations suggests that energy transfer by nanoparticle dispersion is negligible, and thus cannot explain the abnormal heat transfer coefficient increases Furthermore, a comparison of the nanoparticle and turbulent eddy time and length scales clearly indicates that the nanoparticles move homogeneously with the fluid in the presence of turbulent eddies so an effect on turbulence intensity is also doubtful Thus, we propose an alternative explanation for the abnormal heat transfer coefficient increases: the nanofluid properties may vary significantly within the boundary layer because of the effect of the temperature gradient and thermophoresis For a heated fluid, these effects can result in a significant decrease of viscosity within the boundary layer, thus leading to heat transfer enhancement A correlation structure that captures these effects is proposed

5,329 citations

Journal ArticleDOI
TL;DR: In this article, the status of worldwide research in the thermal conductivity of carbon nanotubes and their polymer nanocomposites is reviewed, as well as the relationship between thermal conductivities and the micro- and nano-structure of the composites.

2,102 citations

Journal ArticleDOI
TL;DR: It was found that the structure and morphology also affect the energy transport among tissue constituents and therefore the ablation efficiency of biological tissues is increased.
Abstract: Author(s): Vogel, Alfred; Venugopalan, Vasan | Abstract: The mechanisms of pulsed laser ablation of biological tissues were studied. The transiently empty space created between the fiber tip and the tissue surface improved the optical transmission to the target and thus increased the ablation efficiency. It was found that the structure and morphology also affect the energy transport among tissue constituents.

1,861 citations

Journal ArticleDOI
TL;DR: In this paper, the phase change problem has been formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for, which makes it difficult for comparison to be made to assess the suitability of PCMs to particular applications.
Abstract: This paper reviews the development of latent heat thermal energy storage systems studied detailing various phase change materials (PCMs) investigated over the last three decades, the heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy and the formulation of the phase change problem. It also examines the geometry and configurations of PCM containers and a series of numerical and experimental tests undertaken to assess the effects of parameters such as the inlet temperature and the mass flow rate of the heat transfer fluid (HTF). It is concluded that most of the phase change problems have been carried out at temperature ranges between 0 °C and 60 °C suitable for domestic heating applications. In terms of problem formulation, the common approach has been the use of enthalpy formulation. Heat transfer in the phase change problem was previously formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for. There is no standard method (such as British Standards or EU standards) developed to test for PCMs, making it difficult for comparison to be made to assess the suitability of PCMs to particular applications. A unified platform such as British Standards, EU standards needs to be developed to ensure same or similar procedure and analysis (performance curves) to allow comparison and knowledge gained from one test to be applied to another.

1,630 citations

Journal ArticleDOI
TL;DR: In this article, a new general correlation for forced convection boiling has been developed with the aid of a large data bank consisting of over 4300 data points for water, refrigerants and ethylene glycol, covering seven fluids and 28 authors.

1,050 citations