scispace - formally typeset
Search or ask a question
Author

Warren Weaver

Bio: Warren Weaver is an academic researcher from Alfred P. Sloan Foundation. The author has contributed to research in topics: Mathematical theory & Settling. The author has an hindex of 17, co-authored 55 publications receiving 29659 citations. Previous affiliations of Warren Weaver include University of Wisconsin-Madison & California Institute of Technology.


Papers
More filters
Journal Article
TL;DR: The Mathematical Theory of Communication (MTOC) as discussed by the authors was originally published as a paper on communication theory more than fifty years ago and has since gone through four hardcover and sixteen paperback printings.
Abstract: Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.

15,525 citations

Journal ArticleDOI
TL;DR: The theory of communication is extended to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message anddue to the nature of the final destination of the information.
Abstract: HE recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist1 and Hartley2 on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information. The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain physical or conceptual entities. These semantic aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual message is one selected from a set of possible messages. The system must be designed to operate for each possible selection, not just the one which will actually be chosen since this is unknown at the time of design. If the number of messages in the set is finite then this number or any monotonic function of this number can be regarded as a measure of the information produced when one message is chosen from the set, all choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic function. Although this definition must be generalized considerably when we consider the influence of the statistics of the message and when we have a continuous range of messages, we will in all cases use an essentially logarithmic measure. The logarithmic measure is more convenient for various reasons:

10,281 citations

Book ChapterDOI
TL;DR: Science has led to a multitude of results that affect men’s lives, some of which are embodied in mere conveniences of a relatively trivial sort, but others are of unquestioned benefit and comfort.
Abstract: Science has led to a multitude of results that affect men’s lives. Some of these results are embodied in mere conveniences of a relatively trivial sort. Many of them, based on science and developed through technology, are essential to the machinery of modern life. Many other results, especially those associated with the biological and medical sciences, are of unquestioned benefit and comfort. Certain aspects of science have profoundly influenced men’s ideas and even their ideals. Still other aspects of science are thoroughly awesome.

1,017 citations

Journal ArticleDOI
TL;DR: In this paper, a partial differential equation for the number density of particles as a function of depth and time is derived for a liquid of finite depth with an arbitrary initial distribution, and a reduced form of the solution is obtained which contains a single parameter.
Abstract: Settling of small particles in a fluid; mathematical theory.---Small particles immersed in a liquid experience a motion which is the combination of a steady gravitational drift and a Brownian movement. If there are space variations in the density of distribution of particles, the Brownian movement produces a diffusion which tends to equalize the density. In the steady state the density $n$ of particles is an exponential function of $x$, the distance below the surface of the liquid. This paper investigates the manner in which the steady state is established. A consideration of the combined effect of fall and diffusion leads to a partial differential equation for the number density of particles as a function of depth and time. A set of special solutions is obtained in terms of which a solution satisfying initial and boundary conditions can be expressed. (1) Liquid of finite depth. The solution is obtained for a liquid of finite depth with an arbitrary initial distribution ${n}_{0}=f(x)$. For the case of uniform initial distribution a reduced form of the solution is obtained which contains a single parameter. This one parameter family of curves is plotted, and from these curves, either directly or by interpolation, may be obtained the density distribution at any time for a solution of any depth, density, and viscosity, and for particles of any size and density. For small values of $t$, since the solution obtained converges slowly, an image method is used to obtain an integral formula for the density. (2) Liquid of semi-infinite or infinite depth. In the case of a liquid of infinite depth the solution for an arbitrary initial distribution is expressed by the Fourier integral identity. The case of zero initial density for negative $x$, and constant initial density for positive $x$ is calculated, as is also the case of particles initially uniformly distributed over a layer of depth $h$. In the case of a liquid extending from $x=0$ to $x=\ensuremath{\infty}$, the boundary conditions are satisfied by assuming a suitable fictitious initial distribution over the range from $x=\ensuremath{-}\ensuremath{\infty}$ to $x=0$. The cases of uniform initial distribution, and initial distribution over a layer, are calculated. The latter case, while derived for a liquid of semi-infinite depth, gives approximately the distribution of density during the settling of a layer of particles initially distributed uniformly over a depth $h$ at the upper end of a very long column of liquid.

167 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a general formula (α) of which a special case is the Kuder-Richardson coefficient of equivalence is shown to be the mean of all split-half coefficients resulting from different splittings of a test, therefore an estimate of the correlation between two random samples of items from a universe of items like those in the test.
Abstract: A general formula (α) of which a special case is the Kuder-Richardson coefficient of equivalence is shown to be the mean of all split-half coefficients resulting from different splittings of a test. α is therefore an estimate of the correlation between two random samples of items from a universe of items like those in the test. α is found to be an appropriate index of equivalence and, except for very short tests, of the first-factor concentration in the test. Tests divisible into distinct subtests should be so divided before using the formula. The index $$\bar r_{ij} $$ , derived from α, is shown to be an index of inter-item homogeneity. Comparison is made to the Guttman and Loevinger approaches. Parallel split coefficients are shown to be unnecessary for tests of common types. In designing tests, maximum interpretability of scores is obtained by increasing the first-factor concentration in any separately-scored subtest and avoiding substantial group-factor clusters within a subtest. Scalability is not a requisite.

37,235 citations

Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a paradigm for managing the dynamic aspects of organizational knowledge creating processes, arguing that organizational knowledge is created through a continuous dialogue between tacit and explicit knowledge.
Abstract: This paper proposes a paradigm for managing the dynamic aspects of organizational knowledge creating processes. Its central theme is that organizational knowledge is created through a continuous dialogue between tacit and explicit knowledge. The nature of this dialogue is examined and four patterns of interaction involving tacit and explicit knowledge are identified. It is argued that while new knowledge is developed by individuals, organizations play a critical role in articulating and amplifying that knowledge. A theoretical framework is developed which provides an analytical perspective on the constituent dimensions of knowledge creation. This framework is then applied in two operational models for facilitating the dynamic creation of appropriate organizational knowledge.

17,196 citations

Book ChapterDOI
01 Jan 1973
TL;DR: In this paper, it is shown that the classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion.
Abstract: In this paper it is shown that the classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion. This observation shows an extension of the principle to provide answers to many practical problems of statistical model fitting.

15,424 citations

Book
01 Jan 1948
TL;DR: The Mathematical Theory of Communication (MTOC) as discussed by the authors was originally published as a paper on communication theory more than fifty years ago and has since gone through four hardcover and sixteen paperback printings.
Abstract: Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.

10,215 citations