scispace - formally typeset
Search or ask a question

Showing papers by "Warrick J. Couch published in 2018"


Journal ArticleDOI
TL;DR: In this paper, the authors presented the ∼800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H'α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1.
Abstract: We present the ∼800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

95 citations


Journal ArticleDOI
TL;DR: The first major release of data from the SAMI Galaxy Survey as discussed by the authors focuses on the emission-line physics of galaxies and includes data for 772 galaxies, about 20% of the full survey.
Abstract: We present the first major release of data from the SAMI Galaxy Survey. This data release focuses on the emission-line physics of galaxies. Data Release One includes data for 772 galaxies, about 20 per cent of the full survey. Galaxies included have the redshift range 0.004 < z < 0.092, a large mass range (7.6 < log M*/ M⊙ < 11.6), and star formation rates of ∼10^(−4) to ∼10^1M⊙ yr^(−1). For each galaxy, we include two spectral cubes and a set of spatially resolved 2D maps: single- and multi-component emission-line fits (with dust-extinction corrections for strong lines), local dust extinction, and star formation rate. Calibration of the fibre throughputs, fluxes, and differential atmospheric refraction has been improved over the Early Data Release. The data have average spatial resolution of 2.16 arcsec (full width at half-maximum) over the 15 arcsec diameter field of view and spectral (kinematic) resolution of R = 4263 (σ = 30 km s^(−1)) around H α. The relative flux calibration is better than 5 per cent, and absolute flux calibration has an rms of 10 per cent. The data are presented online through the Australian Astronomical Observatory's Data Central.

72 citations


Journal ArticleDOI
TL;DR: The WiggleZ Dark Energy Survey as discussed by the authors measured the redshifts of over 200 000 ultraviolet (UV)-selected (NUV < 22.8 mag) galaxies on the Anglo-Australian Telescope.
Abstract: The WiggleZ Dark Energy Survey measured the redshifts of over 200 000 ultraviolet (UV)- selected (NUV < 22.8 mag) galaxies on the Anglo-Australian Telescope. The survey detected the baryon acoustic oscillation signal in the large-scale distribution of galaxies over the redshift range 0.2 < z < 1.0, confirming the acceleration of the expansion of the Universe and measuring the rate of structure growth within it. Here, we present the final data release of the survey: a catalogue of 225 415 galaxies and individual files of the galaxy spectra. We analyse the emission-line properties of these UV-luminous Lyman-break galaxies by stacking the spectra in bins of luminosity, redshift, and stellar mass. The most luminous (-25 mag < M < -22 mag) galaxies have very broad Hβ emission from active nuclei, as well as a broad second component to the [OIII] (495.9 nm, 500.7 nm) doublet lines that is blueshifted by 100 km s, indicating the presence of gas outflows in these galaxies. The composite spectra allow us to detect and measure the temperature-sensitive [O III] (436.3 nm) line and obtain metallicities using the direct method. The metallicities of intermediate stellar mass (8.8 < log (M*/M⊙) < 10)WiggleZ galaxies are consistent with normal emission-line galaxies at the samemasses. In contrast, the metallicities of high stellarmass (10 < log (M*/M⊙) < 12) WiggleZ galaxies are significantly lower than for normal emission-line galaxies at the same masses. This is not an effect of evolution as the metallicities do not vary with redshift; it is most likely a property specific to the extremely UV-luminous WiggleZ galaxies.

36 citations


Journal ArticleDOI
TL;DR: In this article, a hydrodynamical N-body model was proposed to demonstrate that elliptical galaxies can transform into S0s by acquiring a disc, where the merger with a massive gas-rich satellite can lead to the formation of a baryonic disc around an elliptical.
Abstract: We present hydrodynamical N-body models which demonstrate that elliptical galaxies can transform into S0s by acquiring a disc. In particular, we show that the merger with a massive gas-rich satellite can lead to the formation of a baryonic disc around an elliptical. We model the elliptical as a massive, compact galaxy which could be observed as a 'red nugget' in the high-z universe. This scenario contrasts with existing S0 formation scenarios in the literature in two important ways. First, the progenitor is an elliptical galaxy whereas scenarios in the literature typically assume a spiral progenitor. Secondly, the physical conditions underlying our proposed scenario can exist in low-density environments such as the field, in contrast to scenarios in the literature which typically address dense environments like clusters and groups. As a consequence, S0s in the field may be the most likely candidates to have evolved from elliptical progenitors. Our scenario also naturally explains recent observations which indicate that field S0s may have older bulges than discs, contrary to cluster S0s which seem to have older discs than bulges.

21 citations


Proceedings ArticleDOI
06 Jul 2018
TL;DR: The SAMI integral field spectrograph (SAMI) instrument on the Anglo-Australian Telescope (AAT) is being substantially expanded with a new instrument called Hector.
Abstract: Based on the success of the SAMI integral field spectrograph (IFS) instrument on the Anglo-Australian Telescope (AAT) the capacity for large IFS nearby galaxy surveys on the AAT is being substantially expanded with a new instrument called Hector. The high filling-fraction imaging fibre bundles ‘hexabundles’ of the type used on SAMI, are being enlarged to cover up to 30-arcsec diameter. The aim is to reach two effective radii on most galaxies, where the galaxy rotation curve flattens and >75% of the specific angular momentum of disk galaxies is accounted for. Driven by the key science case, Hector will have a 1.3A spectral resolution, enabling high-order stellar kinematics to be measured on a larger fraction of galaxies than with any other IFS instrument. Hector will be on sky in 2019. The first module of Hector, Hector-I, will have 21 hexabundles and >42 sky fibres to observe 20 galaxies and a calibration star simultaneously. It consists of new blue and red-arm spectrographs that have been designed at the Australian Astronomical Observatory (AAO; now called AAO-Macquarie), coupled to the new hexabundles and robotic positioner from AAO-USydney (formerly the Sydney Astrophotonics Instrumentation Laboratory, SAIL) at Sydney University. A novel robotic positioning concept will compensate for varying telecentricity over the 2-degree-field of the AAT to recoup the 20% loss in light at the edge of the field. Hector-I will survey 15,000 galaxies. Additional modules in the future would result in 30,000 galaxies. Hector will take integral field spectroscopy on galaxies with z<0.15 in the 4MOST WAVES-North and WAVES-South∗ regions. The WAVES data, which will come later, will give the environment metrics neces- sary to relate how local and global environments influence galaxy growth through gas accretion, star formation and spins measured with Hector. The WALLABY ASKAP† survey will trace HI gas across the Hector fields, which in combination with Hector will give a complete view of gas accretion and star formation.

6 citations