scispace - formally typeset
Search or ask a question
Author

Warrick J. Couch

Bio: Warrick J. Couch is an academic researcher from Swinburne University of Technology. The author has contributed to research in topics: Galaxy & Galaxy cluster. The author has an hindex of 109, co-authored 410 publications receiving 63088 citations. Previous affiliations of Warrick J. Couch include Australian National University & Australian Astronomical Observatory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigate the relation between the kinematics of gas and stars, and stellar mass in a comprehensive sample of nearby galaxies, and find that all 235 objects in their sample, regardless of their morphology, lie on a tight relation linking stellar mass (M-*) to internal velocity quantified by the S-0.5 parameter, which combines the contribution of both dispersion and rotational velocity (V-rot) to the dynamical support of a galaxy.
Abstract: We take advantage of the first data from the Sydney-AAO Multi-object Integral field Galaxy Survey to investigate the relation between the kinematics of gas and stars, and stellar mass in a comprehensive sample of nearby galaxies. We find that all 235 objects in our sample, regardless of their morphology, lie on a tight relation linking stellar mass (M-*) to internal velocity quantified by the S-0.5 parameter, which combines the contribution of both dispersion (sigma) and rotational velocity (V-rot) to the dynamical support of a galaxy (S-0.5 = root 0.5 V-rot(2) + sigma(2)). Our results are independent of the baryonic component from which sigma and V-rot are estimated, as the S-0.5 of stars and gas agree remarkably well. This represents a significant improvement compared to the canonical M-* versus Vrot and M-* versus s relations. Not only is no sample pruning necessary, but also stellar and gas kinematics can be used simultaneously, as the effect of asymmetric drift is taken into account once V-rot and sigma are combined. Our findings illustrate how the combination of dispersion and rotational velocities for both gas and stars can provide us with a single dynamical scaling relation valid for galaxies of all morphologies across at least the stellar mass range 8.5 < log (M-*/M-circle dot) < 11. Such relation appears to be more general and at least as tight as any other dynamical scaling relation, representing a unique tool for investigating the link between galaxy kinematics and baryonic content, and a less biased comparison with theoretical models.

87 citations

Journal ArticleDOI
TL;DR: In this paper, the evolution of the spiral, S0 and elliptical fractions in galaxy clusters as a function of cluster velocity dispersion and X-ray luminosity was quantified using a new database of 72 nearby clusters from the WIde-Field Nearby Galaxy-cluster Survey (WINGS).
Abstract: We quantify the evolution of the spiral, S0 and elliptical fractions in galaxy clusters as a function of cluster velocity dispersion ($\sigma$) and X-ray luminosity ($L_X$) using a new database of 72 nearby clusters from the WIde-Field Nearby Galaxy-cluster Survey (WINGS) combined with literature data at $z=0.5-1.2$. Most WINGS clusters have $\sigma$ between 500 and 1100 $\rm km s^{-1}$, and $L_X$ between 0.2 and $5 \times 10^{44} \rm erg/s$. The S0 fraction in clusters is known to increase with time at the expense of the spiral population. We find that the spiral and S0 fractions have evolved more strongly in lower $\sigma$, less massive clusters, while we confirm that the proportion of ellipticals has remained unchanged. Our results demonstrate that morphological evolution since $z=1$ is not confined to massive clusters, but is actually more pronounced in low mass clusters, and therefore must originate either from secular (intrinsic) evolution and/or from environmental mechanisms that act preferentially in low-mass environments, or both in low- and high-mass systems. We also find that the evolution of the spiral fraction perfectly mirrors the evolution of the fraction of star-forming galaxies. Interestingly, at low-z the spiral fraction anticorrelates with $L_X$. Conversely, no correlation is observed with $\sigma$. Given that both $\sigma$ and $L_X$ are tracers of the cluster mass, these results pose a challenge for current scenarios of morphological evolution in clusters.

87 citations

Journal ArticleDOI
TL;DR: In this paper, the authors conducted a redshift survey of eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85) using the AAOmega multi-object spectrograph on the 3.9m Anglo-Australian Telescope.
Abstract: We describe the selection of galaxies targeted in eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029 < z < 0.058) as part of the Sydney-AAO Multi-Object Integral field spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterize the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21 257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (∼94 per cent) for rpetro ≤ 19.4 and cluster-centric distances R < 2R200. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25 ≤ log(M200/M_⊙) ≤ 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and point spread function matched photometry are derived from Sloan Digital Sky Survey and VLT Survey Telescope/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R

86 citations

Journal ArticleDOI
TL;DR: In this paper, the authors performed a joint counts-in-cells analysis on galaxies in the 2dF Galaxy Redshift Survey, classified by both colour and spectral type, eta, as early- or late-type galaxies.
Abstract: It is well known that the clustering of galaxies depends on galaxy type. Such relative bias complicates the inference of cosmological parameters from galaxy redshift surveys, and is a challenge to theories of galaxy formation and evolution. In this paper we perform a joint counts-in-cells analysis on galaxies in the 2dF Galaxy Redshift Survey, classified by both colour and spectral type, eta, as early- or late-type galaxies. We fit three different models of relative bias to the joint probability distribution of the cell counts, assuming Poisson sampling of the galaxy density field. We investigate the non-linearity and stochasticity of the relative bias, with cubic cells of side 10 less than or equal toLless than or equal to 45 Mpc (h= 0.7). Exact linear bias is ruled out with high significance on all scales. Power-law bias gives a better fit, but likelihood ratios prefer a bivariate lognormal distribution, with a non-zero 'stochasticity', i.e. scatter that may result from physical effects on galaxy formation other than those from the local density field. Using this model, we measure a correlation coefficient in log-density space (r(LN)) of 0.958 for cells of length L= 10 Mpc, increasing to 0.970 by L= 45 Mpc. This corresponds to a stochasticity sigma(b)/(b) over cap of 0.44 +/- 0.02 and 0.27 +/- 0.05, respectively. For smaller cells, the Poisson-sampled lognormal distribution presents an increasingly poor fit to the data, especially with regard to the fraction of completely empty cells. We compare these trends with the predictions of semi-analytic galaxy formation models: these match the data well in terms of the overall level of stochasticity, variation with scale and the fraction of empty cells.

85 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of 16 nearby galaxy groups and their constituent galaxies were investigated using a friends-of-friends algorithm on the positions and velocities from the 6-degree Field Galaxy Survey and NASA/IPAC Extragalactic Database.
Abstract: Here, we present an investigation of the properties of 16 nearby galaxy groups and their constituent galaxies. The groups are selected from the Group Evolution Multiwavelength Study (GEMS) and all have X-ray as well as wide-field neutral hydrogen (H I) observations. Group membership is determined using a friends-of-friends algorithm on the positions and velocities from the 6-degree Field Galaxy Survey and NASA/IPAC Extragalactic Database. For each group we derive their physical properties using this membership, including: velocity dispersions (σ v), virial masses (M V), total K-band luminosities [LK(Tot)] and early-type fractions (f early) and present these data for the individual groups. We find that the GEMS X-ray luminosity is proportional to the group velocity dispersions and virial masses: L X(r 500) ∝ σ 3.11±0.59 v and L X(r 500) ∝ M 1.13±0.27 V , consistent with the predictions of self-similarity between group and clusters. We also find that M V ∝ LK(Tot) 2.0±0.9 , i.e. mass grows faster than light and that the fraction of early-type galaxies in the groups is correlated with the group X-ray luminosities and velocity dispersions. We examine the brightest group galaxies (BGGs), finding that, while the luminosity of the BGG correlates with its total group luminosity, the fraction of group luminosity contained in the BGG decreases with increasing total group luminosity. This suggests that BGGs grow by mergers at early times in group evolution while the group continues to grow by accreting infalling galaxies. We form a composite galaxy group in order to examine the properties of the constituent galaxies and compare their properties with those of field galaxies. There are clear radial trends, with group galaxies becoming fainter, bluer and morphologically later types with increasing radius from the group centre, reaching field levels at radii >r 500(>0.7r 200). We divide the composite group-by-group X-ray luminosity and find that galaxies in high X-ray luminosity groups [log10 L X(r 500) 41.7 erg s −1 ] are redder with a higher giant-to-dwarf ratio and are more likely to be early-type galaxies than are those galaxies in low X-ray luminosity groups. We conclude that harassment and ram-pressure stripping processes are unlikely to cause these differences. The differences are more likely to be due to galaxy‐galaxy mergers and possibly some further mechanism such as strangulation. If mergers are the dominant mechanism then the properties of galaxies in the higher X-ray luminosity groups are a result of mergers at earlier epochs in smaller mass groups that have since merged to become the structures we observe today, while lower X-ray luminosity groups are still undergoing mergers today.

85 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the mass density, Omega_M, and cosmological-constant energy density of the universe were measured using the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology project.
Abstract: We report measurements of the mass density, Omega_M, and cosmological-constant energy density, Omega_Lambda, of the universe based on the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these SNe, at redshifts between 0.18 and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04} (identified systematics). The data are strongly inconsistent with a Lambda = 0 flat cosmology, the simplest inflationary universe model. An open, Lambda = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of P(Lambda > 0) = 99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calan/Tololo sample and our high-redshift sample. The conclusions are robust whether or not a width-luminosity relation is used to standardize the SN peak magnitudes.

16,838 citations

Journal ArticleDOI
TL;DR: In this article, the authors used spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62.
Abstract: We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmo- logical parameters: the Hubble constant the mass density the cosmological constant (i.e., the (H 0 ), () M ), vacuum energy density, the deceleration parameter and the dynamical age of the universe ) " ), (q 0 ), ) M \ 1) methods. We estimate the dynamical age of the universe to be 14.2 ^ 1.7 Gyr including systematic uncer- tainties in the current Cepheid distance scale. We estimate the likely e†ect of several sources of system- atic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these e†ects appear to reconcile the data with and ) " \ 0 q 0 " 0.

16,674 citations

Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

01 Jan 1998
TL;DR: The spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 � z � 0.62 were presented in this paper.
Abstract: We present spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 � z � 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-Z Supernova Search Team (Garnavich et al. 1998; Schmidt et al. 1998) and Riess et al. (1998a), this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmological parameters: the Hubble constant (H0), the mass density (M), the cosmological constant (i.e., the vacuum energy density, �), the deceleration parameter (q0), and the dynamical age of the Universe (t0). The distances of the high-redshift SNe Ia are, on average, 10% to 15% farther than expected in a low mass density (M = 0.2) Universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., � > 0) and a current acceleration of the expansion (i.e., q0 < 0). With no prior constraint on mass density other than M � 0, the spectroscopically confirmed SNe Ia are statistically consistent with q0 < 0 at the 2.8�

11,197 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations