scispace - formally typeset
Search or ask a question
Author

Warrick J. Couch

Bio: Warrick J. Couch is an academic researcher from Swinburne University of Technology. The author has contributed to research in topics: Galaxy & Galaxy cluster. The author has an hindex of 109, co-authored 410 publications receiving 63088 citations. Previous affiliations of Warrick J. Couch include Australian National University & Australian Astronomical Observatory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a program of spectroscopic observations of galaxies in a sample of optically-selected clusters taken from the catalogue of Couch et al. is presented, and velocity dispersions comparable with present-day clusters of equivalent comoving space density.
Abstract: We present a programme of spectroscopic observations of galaxies in a sample of optically-selected clusters taken from the catalogue of Couch et al (1991). Previous ROSAT observations of these clusters have shown them to have lower X-ray luminosities, given their optical richness, than might be expected on the basis of local samples. In the present paper we extend this work by determining velocity dispersions of a subsample of the clusters. We confirm the dynamical reality of all but one of the original sample, and find velocity dispersions comparable with present-day clusters of equivalent comoving space density. Thus, in the context of the $L_X-\sigma$ relation for present-day clusters, there is evidence for a higher velocity dispersion at fixed X-ray luminosity. A key question is whether the high velocity dispersions are indicative of the gravitational potential. If they are, the X-ray luminosities measured in Bower et al., 1994 (Paper I), would then imply an implausibly low efficiency of X-ray generation. Alternatively, the discrepancy could be explained if the clusters were systems of lower virial temperature, in which the apparent velocity dispersion is inflated by an infalling, unrelaxed halo. This might result either from an increase with redshift in the infall rate for clusters, or from the preferential selection of clusters embedded in filaments oriented along the line of sight. Since clusters with similar properties can be found in local optically selected catalogues, we suggest that the latter explanation is more likely.

48 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compare the apparent axial ratio distributions of the brightest cluster galaxies (BCGs) and normal ellipticals (Es) in a sample of 75 galaxy clusters from the WIde-field Nearby Galaxy-cluster Survey (WINGS).
Abstract: We compare the apparent axial ratio distributions of the brightest cluster galaxies (BCGs) and normal ellipticals (Es) in our sample of 75 galaxy clusters from the WIde-field Nearby Galaxy-cluster Survey (WINGS). Most BCGs in our clusters (69 per cent) are classified as cD galaxies. The sample of cDs has been completed by 14 additional cDs (non-BCGs) we found in our clusters. We deproject the apparent axial ratio distributions of Es, BCGs and cDs using a bivariate version of the Lucy rectification algorithm, whose results are supported by an independent Monte Carlo technique. Finally, we compare the intrinsic shape distribution of BCGs to the corresponding shape distribution of the central part of cluster-sized dark matter haloes extracted from the GIF2 Lambda cold dark matter (ΛCDM) N-body simulations (Gao et al.). We find that (i) Es have triaxial shape, the triaxiality sharing almost evenly the intrinsic axial ratio parameter space, with a weak preference for prolateness and (ii) the BCGs have triaxial shape as well. However, their tendency towards prolateness is much stronger than in the case of Es. Such a strong prolateness appears entirely due to the sizeable (dominant) component of cDs inside the WINGS sample of BCGs. In fact, while the ‘normal’ (non-cD) BCGs do not differ from Es, as far as the shape distribution is concerned, the axial ratio distribution of BCG_cD galaxies is found to support quite prolate shapes; (iii) our result turns out to be strongly at variance with the only similar previous analysis by Ryden, Lauer & Postman (RLP93), where BCGs and Es were found to share the same axial ratio distribution; (iv) our data suggest that the above discrepancy is mainly caused by the different criteria that RLP93 and ourselves use to select the cluster samples, coupled with a preference of cDs to reside in powerful X-ray-emitting clusters; (v) the GIF2 N-body results suggest that the prolateness of the BCGs (in particular the cDs) could reflect the shape of the associated dark matter haloes.

47 citations

Journal ArticleDOI
TL;DR: The Gemini Near-infrared OH Suppression Integral field unit (IFU) system (GNOSIS) as discussed by the authors was designed to suppress 103 OH doublets between 1.47 and 1.7 µm by a factor of 1000 with a resolving power of 10,000.
Abstract: The background noise between 1 and 1.8 ?mu m in ground-based instruments is dominated by atmospheric emission from hydroxyl molecules. We have built and commissioned a new instrument, the Gemini Near-infrared OH Suppression Integral Field Unit (IFU) System (GNOSIS), which suppresses 103 OH doublets between 1.47 and 1.7?mu m by a factor of 1000 with a resolving power of 10?000. We present the first results from the commissioning of GNOSIS using the IRIS2 spectrograph at the Anglo-Australian Telescope. We present measurements of sensitivity, background and throughput. The combined throughput of the GNOSIS fore-optics, grating unit and relay optics is 36?per cent, but this could be improved to 46?per cent with a more optimal design. We measure strong suppression of the OH lines, confirming that OH suppression with fibre Bragg gratings will be a powerful technology for low-resolution spectroscopy. The integrated OH suppressed background between 1.5 and 1.7 mu m is reduced by a factor of 9 compared to a control spectrum using the same system without suppression. The potential of low-resolution OH-suppressed spectroscopy is illustrated with example observations of Seyfert galaxies and a low-mass star. The GNOSIS background is dominated by detector dark current below 1.67 mu m and by thermal emission above 1.67 mu m. After subtracting these, we detect an unidentified residual interline component of 860 +/- 210 photons s-1 m-2?arcsec-2?mu m-1, comparable to previous measurements. This component is equally bright in the suppressed and control spectra. We have investigated the possible source of the interline component, but were unable to discriminate between a possible instrumental artefact and intrinsic atmospheric emission. Resolving the source of this emission is crucial for the design of fully optimized OH suppression spectrographs. The next-generation OH suppression spectrograph will be focused on resolving the source of the interline component, taking advantage of better optimization for a fibre Bragg grating feed incorporating refinements of design based on our findings from GNOSIS. We quantify the necessary improvements for an optimal OH suppressing fibre spectrograph design.

47 citations

Journal ArticleDOI
TL;DR: In this article, integral field spectroscopy from the SAMI Galaxy Survey was used to identify galaxies that show evidence for recent quenching of star formation in the presence of ongoing star formation.
Abstract: We use integral field spectroscopy from the SAMI Galaxy Survey to identify galaxies that show evidence for recent quenching of star formation. The galaxies exhibit strong Balmer absorption in the absence of ongoing star formation in more than 10% of their spectra within the SAMI field of view. These $\rm{H}{\delta}$-strong galaxies (HDSGs) are rare, making up only $\sim 2$% (25/1220) of galaxies with stellar mass ${\rm log(}M_*/M_{\odot})>10$. The HDSGs make up a significant fraction of non-passive cluster galaxies (15%; 17/115) and a smaller fraction (2.0%; 8/387) of the non-passive population in low-density environments. The majority (9/17) of cluster HDSGs show evidence for star formation at their centers, with the HDS regions found in the outer parts of the galaxy. Conversely, the $\rm{H}{\delta}$-strong signal is more evenly spread across the galaxy for the majority (6/8) of HDSGs in low-density environments, and is often associated with emission lines that are not due to star formation. We investigate the location of the HDSGs in the clusters, finding that they are exclusively within 0.6$R_{200}$ of the cluster centre, and have a significantly higher velocity dispersion relative to the cluster population. Comparing their distribution in projected-phase-space to those derived from cosmological simulations indicates that the cluster HDSGs are consistent with an infalling population that have entered the central 0.5$r_{200, 3D}$ cluster region within the last $\sim 1\,$Gyr. In the 8/9 cluster HDSGs with central star formation, the extent of star formation is consistent with that expected of outside-in quenching by ram-pressure stripping. Our results indicate that the cluster HDSGs are currently being quenched by ram-pressure stripping on their first passage through the cluster.

47 citations

Journal ArticleDOI
TL;DR: In this article, the growth rate of cosmic structure for the redshift range 0.1 < z < 0.9 was measured using redshift-space distortions in the galaxy power spectrum of the WiggleZ Dark Energy Survey.
Abstract: We present precise measurements of the growth rate of cosmic structure for the redshift range 0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of the WiggleZ Dark Energy Survey. Our results, which have a precision of around 10% in four independent redshift bins, are well-fit by a flat LCDM cosmological model with matter density parameter Omega_m = 0.27. Our analysis hence indicates that this model provides a self-consistent description of the growth of cosmic structure through large-scale perturbations and the homogeneous cosmic expansion mapped by supernovae and baryon acoustic oscillations. We achieve robust results by systematically comparing our data with several different models of the quasi-linear growth of structure including empirical models, fitting formulae calibrated to N-body simulations, and perturbation theory techniques. We extract the first measurements of the power spectrum of the velocity divergence field, P_vv(k), as a function of redshift (under the assumption that P_gv(k) = -sqrt[P_gg(k) P_vv(k)] where g is the galaxy overdensity field), and demonstrate that the WiggleZ galaxy-mass cross-correlation is consistent with a deterministic (rather than stochastic) scale-independent bias model for WiggleZ galaxies for scales k < 0.3 h/Mpc. Measurements of the cosmic growth rate from the WiggleZ Survey and other current and future observations offer a powerful test of the physical nature of dark energy that is complementary to distance-redshift measures such as supernovae and baryon acoustic oscillations.

47 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the mass density, Omega_M, and cosmological-constant energy density of the universe were measured using the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology project.
Abstract: We report measurements of the mass density, Omega_M, and cosmological-constant energy density, Omega_Lambda, of the universe based on the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these SNe, at redshifts between 0.18 and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04} (identified systematics). The data are strongly inconsistent with a Lambda = 0 flat cosmology, the simplest inflationary universe model. An open, Lambda = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of P(Lambda > 0) = 99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calan/Tololo sample and our high-redshift sample. The conclusions are robust whether or not a width-luminosity relation is used to standardize the SN peak magnitudes.

16,838 citations

Journal ArticleDOI
TL;DR: In this article, the authors used spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62.
Abstract: We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmo- logical parameters: the Hubble constant the mass density the cosmological constant (i.e., the (H 0 ), () M ), vacuum energy density, the deceleration parameter and the dynamical age of the universe ) " ), (q 0 ), ) M \ 1) methods. We estimate the dynamical age of the universe to be 14.2 ^ 1.7 Gyr including systematic uncer- tainties in the current Cepheid distance scale. We estimate the likely e†ect of several sources of system- atic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these e†ects appear to reconcile the data with and ) " \ 0 q 0 " 0.

16,674 citations

Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

01 Jan 1998
TL;DR: The spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 � z � 0.62 were presented in this paper.
Abstract: We present spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 � z � 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-Z Supernova Search Team (Garnavich et al. 1998; Schmidt et al. 1998) and Riess et al. (1998a), this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmological parameters: the Hubble constant (H0), the mass density (M), the cosmological constant (i.e., the vacuum energy density, �), the deceleration parameter (q0), and the dynamical age of the Universe (t0). The distances of the high-redshift SNe Ia are, on average, 10% to 15% farther than expected in a low mass density (M = 0.2) Universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., � > 0) and a current acceleration of the expansion (i.e., q0 < 0). With no prior constraint on mass density other than M � 0, the spectroscopically confirmed SNe Ia are statistically consistent with q0 < 0 at the 2.8�

11,197 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations