scispace - formally typeset
Search or ask a question
Author

Warrick J. Couch

Bio: Warrick J. Couch is an academic researcher from Swinburne University of Technology. The author has contributed to research in topics: Galaxy & Galaxy cluster. The author has an hindex of 109, co-authored 410 publications receiving 63088 citations. Previous affiliations of Warrick J. Couch include Australian National University & Australian Astronomical Observatory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe a search for very low-surface-brightness features in deep CCD frames, which would not be detected using more typical connected-pixel algorithms.
Abstract: In this paper, we describe a search for very low-surface-brightness features in deep CCD frames. We show how cross-correlation with templates can be used to detect low-surface-brightness features, which would not be detected using more typical connected-pixel algorithms. The search technique is specifically designed to search for large, low-surface- brightness galaxies like Malin 1. Although we identify 19 potentially interesting, extended, low-surface-brightness objects, we conclude that Malin 1 type objects per se are less prolific than `normal' L^*^ galaxies, and that galaxies with -22 < M_v_ < 19 and μ_0_ ~26 Vmu are at least an order of magnitude less common than their normal-surface- brightness counterparts.

16 citations

Journal ArticleDOI
TL;DR: In this article, a significant empty region between the southern Pavo-Indus (PI) wall and the northern Perseus-Pisces (PP) chain was found.
Abstract: A significant empty region was found between the southern Pavo- Indus (PI) wall and the northern Perseus-Pisces (PP) chain. This survey tests the reality of this void which may simply reflect previous poor sampling of the galaxies in this region. Redshifts for a magnitude selected sample of 379 galaxies were obtained covering the four UKST/SERC survey fields with Bt <= 17.0. All redshifts were obtained with the FLAIR multi-object spectroscopy system on the 1.2 m U.K. Schmidt Telescope at Siding Spring, Australia. Two highly significant density enhancements were found in the galaxy distribution at 133 Mpc and 200 Mpc (Ho=75 km/s/Mpc). We claim that no connexion exists between PP and PI. However, a southern extension of PP was detected and makes the total length of this chain of more than 150 Mpc.

16 citations

Journal ArticleDOI
TL;DR: In this article, a combined analysis of the kinematic and photometric properties at large galactocentric radii of a sample of 14 low-luminosity early-type galaxies in the Fornax and Virgo clusters is presented.
Abstract: We present the results of a combined analysis of the kinematic and photometric properties at large galactocentric radii of a sample of 14 low-luminosity early-type galaxies in the Fornax and Virgo clusters. From Gemini South GMOS long-slit spectroscopic data we measure radial profiles of the kinematic parameters v_{rot}, sigma, h_{3}, and h_{4} out to ~ 1 - 3 effective radii. Multi-band imaging data from the HST/ACS are employed to evaluate surface brightness profiles and isophotal shape parameters of ellipticity, position angle and discyness/boxiness. The galaxies are found to host a cold and old stellar component which extend to the largest observed radii and that is the dominant source of their dynamical support. The prevalence of discy-shaped isophotes and the radial variation of their ellipticity are signatures of a gradual gas dissipation. An early star-forming collapse appears to be the main mechanism acting in the formation of these objects. Major mergers are unlikely to have occurred in these galaxies. We can not rule out a minor merging origin for these galaxies, but a comparison of our results with model predictions of different merger categories places some constraints on the possible merger progenitors. These merger events are required to happen at high-redshift (i.e., z > 1), between progenitors of different mass ratio (at least 3:1) and containing a significant amount of gas (i.e., > 10 percent). A further scenario is that the low-luminosity galaxies were originally late-type galaxies, whose star formation has been truncated by removal of gas and subsequently the disc has been dynamically heated by high speed encounters in the cluster environment.

16 citations

Journal ArticleDOI
TL;DR: In this paper, the authors search for ultra diffuse galaxies (UDGs) in the IC 1459 group and identify 9 galaxies with physical sizes and surface brightnesses that match the UDG criteria within their measurement uncertainties.
Abstract: Using deep g,r,i imaging from the VEGAS survey, we have searched for ultra diffuse galaxies (UDGs) in the IC 1459 group. Assuming they are group members, we identify 9 galaxies with physical sizes and surface brightnesses that match the UDG criteria within our measurement uncertainties. They have mean colours of g--i = 0.6 and stellar masses of $\sim$10$^8$ M$_{\odot}$. Several galaxies appear to have associated systems of compact objects, e.g. globular clusters. Two UDGs contain a central bright nucleus, with a third UDG revealing a remarkable double nucleus. This appears to be the first reported detection of a double nucleus in a UDG - its origin is currently unclear.

16 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of galaxy properties along the red sequence in XMMU J1229+0151, an X-ray selected cluster at 0.98$ drawn from the HAWK-I Cluster Survey (HCS), is presented.
Abstract: We present the results of a detailed analysis of galaxy properties along the red sequence in XMMU J1229+0151, an X-ray selected cluster at $z=0.98$ drawn from the HAWK-I Cluster Survey (HCS). Taking advantage of the broad photometric coverage and the availability of 77 spectra in the cluster field, we fit synthetic spectral energy distributions, and estimate stellar masses and photometric redshifts, which we use to determine the cluster membership. We investigate morphological and structural properties of red sequence galaxies and find that elliptical galaxies populate the bright end, while S0 galaxies represent the predominant population at intermediate luminosities, with their fraction decreasing at fainter magnitudes. A comparison with the low-redshift sample of the WINGS cluster survey reveals that at $z\sim1$ the bright end of the red sequence of XMMU J1229+0151 is richer in S0 galaxies. The faint end of the red sequence in XMMUJ1229+0151 appears rich in disc-dominated galaxies, which are rarer in the low redshift comparison sample at the same luminosities. Despite these differences between the morphological composition of the red sequence in XMMUJ1229+0151 and in low redshift samples, we find that to within the uncertainties, no such difference exists in the ratio of luminous to faint galaxies along the red sequence.

15 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the mass density, Omega_M, and cosmological-constant energy density of the universe were measured using the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology project.
Abstract: We report measurements of the mass density, Omega_M, and cosmological-constant energy density, Omega_Lambda, of the universe based on the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these SNe, at redshifts between 0.18 and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04} (identified systematics). The data are strongly inconsistent with a Lambda = 0 flat cosmology, the simplest inflationary universe model. An open, Lambda = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of P(Lambda > 0) = 99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calan/Tololo sample and our high-redshift sample. The conclusions are robust whether or not a width-luminosity relation is used to standardize the SN peak magnitudes.

16,838 citations

Journal ArticleDOI
TL;DR: In this article, the authors used spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62.
Abstract: We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmo- logical parameters: the Hubble constant the mass density the cosmological constant (i.e., the (H 0 ), () M ), vacuum energy density, the deceleration parameter and the dynamical age of the universe ) " ), (q 0 ), ) M \ 1) methods. We estimate the dynamical age of the universe to be 14.2 ^ 1.7 Gyr including systematic uncer- tainties in the current Cepheid distance scale. We estimate the likely e†ect of several sources of system- atic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these e†ects appear to reconcile the data with and ) " \ 0 q 0 " 0.

16,674 citations

Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

01 Jan 1998
TL;DR: The spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 � z � 0.62 were presented in this paper.
Abstract: We present spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 � z � 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-Z Supernova Search Team (Garnavich et al. 1998; Schmidt et al. 1998) and Riess et al. (1998a), this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmological parameters: the Hubble constant (H0), the mass density (M), the cosmological constant (i.e., the vacuum energy density, �), the deceleration parameter (q0), and the dynamical age of the Universe (t0). The distances of the high-redshift SNe Ia are, on average, 10% to 15% farther than expected in a low mass density (M = 0.2) Universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., � > 0) and a current acceleration of the expansion (i.e., q0 < 0). With no prior constraint on mass density other than M � 0, the spectroscopically confirmed SNe Ia are statistically consistent with q0 < 0 at the 2.8�

11,197 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations