scispace - formally typeset
Search or ask a question
Author

Wayne D. Comper

Bio: Wayne D. Comper is an academic researcher from Monash University, Clayton campus. The author has contributed to research in topics: Albumin & Albuminuria. The author has an hindex of 35, co-authored 128 publications receiving 4072 citations. Previous affiliations of Wayne D. Comper include University of Melbourne & Monash Medical Centre.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings strongly support the paradigm-shifting concept that the glomerular filter normally leaks albumin at nephrotic levels, and restoration of the defective endocytotic and processing function of PT epithelial cells might represent an effective strategy to limit urinary albumin loss, at least in some types of nephRotic syndrome.

387 citations

Journal ArticleDOI
TL;DR: Biochemical and physiological processes that underlie the mechanism of albuminuria are completely reassessed in this article in view of recent discoveries that filtered proteins undergo rapid degradation during renal passage and the resulting excreted peptide fragments are not detected by conventional urine protein assays.

216 citations

Journal ArticleDOI
TL;DR: New insights into albumin filtration and processing are argued for a reassessment of the role of podocytes and the slit diaphragm as major direct determinants governing albuminuria, information is provided on how glomerular morphology and "tubular"albuminuria may be interrelated, and a new rationale for drug development is offered.
Abstract: The mechanism of albuminuria is perhaps one of the most complex yet important questions in renal physiology today. Recent studies have directly demonstrated that the normal glomerulus filters subst...

142 citations

Journal ArticleDOI
01 Sep 2000-Diabetes
TL;DR: Whether albumin is metabolized during renal passage in nondiabetic volunteers and in type 1 diabetic patients with varying levels of albuminuria is examined, and the degradation process is inhibited in diabetic nephropathy in proportion to the level ofalbuminuria detected by RIA.
Abstract: Previous studies by our group have shown that albumin is metabolized in rodents during renal passage and excreted in the urine as a mixture of intact protein and albumin-derived fragments. The aim of this study was to examine whether albumin is metabolized during renal passage in nondiabetic volunteers and in type 1 diabetic patients with varying levels of albuminuria. Nine nondiabetic normoalbuminuric volunteers and 11 type 1 diabetic patients with albumin excretion rates varying from normoalbuminuria to macroalbuminuria were studied. Each subject received an intravenous injection of tritium-labeled albumin ([3H]-albumin). Urine was collected at 4 h and 24 h after injection and analyzed by size exclusion chromatography. The amount of intact and fragmented albumin was quantified, and each fraction was analyzed by radioimmunoassay (RIA) for albumin. [3H]-albumin in nondiabetic volunteers was metabolized during renal passage to small peptide fragments not detectable by conventional RIA (only 0.05-3.8% of the total urinary radioactivity was associated with intact albumin). The process responsible for albumin fragmentation was similar in diabetic patients with normoalbuminuria (intact albumin represented 0.01-4.0% of total urinary radioactivity). However, there was a reduction in the fragmentation ratio (fragmented:intact) in diabetic patients with micro- or macroalbuminuria (intact albumin represented 2.7-55.5%, P = 0.048). This change in the fragmentation ratio was directly related to the degree of albuminuria. These results have important implications for understanding the mechanisms underlying albuminuria in nondiabetic volunteers and type 1 diabetic patients. In nondiabetic volunteers, the renal processing of albumin involves a relatively rapid and comprehensive degradation of albumin to small fragments (range 1-15 kDa). The degradation process is inhibited in diabetic nephropathy in proportion to the level of albuminuria detected by RIA.

141 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Treating hypertension, using drugs with blockade effect on the renin-angiotensin-aldosterone system, and treating dyslipidemia are effective strategies for preventing the development of microalbuminuria, in delaying the progression to more advanced stages of nephropathy and in reducing cardiovascular mortality in patients with type 1 and type 2 diabetes.
Abstract: Diabetic nephropathy is the leading cause of kidney disease in patients starting renal replacement therapy and affects ∼40% of type 1 and type 2 diabetic patients. It increases the risk of death, mainly from cardiovascular causes, and is defined by increased urinary albumin excretion (UAE) in the absence of other renal diseases. Diabetic nephropathy is categorized into stages: microalbuminuria (UAE >20 μg/min and ≤199 μg/min) and macroalbuminuria (UAE ≥200 μg/min). Hyperglycemia, increased blood pressure levels, and genetic predisposition are the main risk factors for the development of diabetic nephropathy. Elevated serum lipids, smoking habits, and the amount and origin of dietary protein also seem to play a role as risk factors. Screening for microalbuminuria should be performed yearly, starting 5 years after diagnosis in type 1 diabetes or earlier in the presence of puberty or poor metabolic control. In patients with type 2 diabetes, screening should be performed at diagnosis and yearly thereafter. Patients with micro- and macroalbuminuria should undergo an evaluation regarding the presence of comorbid associations, especially retinopathy and macrovascular disease. Achieving the best metabolic control (A1c 1.0 g/24 h and increased serum creatinine), using drugs with blockade effect on the renin-angiotensin-aldosterone system, and treating dyslipidemia (LDL cholesterol <100 mg/dl) are effective strategies for preventing the development of microalbuminuria, in delaying the progression to more advanced stages of nephropathy and in reducing cardiovascular mortality in patients with type 1 and type 2 diabetes.

1,505 citations

Journal ArticleDOI
TL;DR: This review integrates recent physiological and molecular understanding of the role of podocytes during the maintenance and failure of the glomerular filtration barrier with hereditary nephrotic syndromes identified over the last 2 years.
Abstract: Glomerular podocytes are highly specialized cells with a complex cytoarchitecture. Their most prominent features are interdigitated foot processes with filtration slits in between. These are bridged by the slit diaphragm, which plays a major role in establishing the selective permeability of the glomerular filtration barrier. Injury to podocytes leads to proteinuria, a hallmark of most glomerular diseases. New technical approaches have led to a considerable increase in our understanding of podocyte biology including protein inventory, composition and arrangement of the cytoskeleton, receptor equipment, and signaling pathways involved in the control of ultrafiltration. Moreover, disturbances of podocyte architecture resulting in the retraction of foot processes and proteinuria appear to be a common theme in the progression of acquired glomerular disease. In hereditary nephrotic syndromes identified over the last 2 years, all mutated gene products were localized in podocytes. This review integrates our recent physiological and molecular understanding of the role of podocytes during the maintenance and failure of the glomerular filtration barrier.

1,358 citations

Journal ArticleDOI
TL;DR: Experimental studies with the real-time iontophoresis method employing the cation tetramethylammonium in normal brain tissue improve the conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment.
Abstract: Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecule...

1,215 citations

Journal ArticleDOI
TL;DR: This article aims to present a comprehensive and critical overview of emerging analytical technologies for EV detection and their clinical applications.
Abstract: Extracellular vesicles (EVs) are diverse, nanoscale membrane vesicles actively released by cells Similar-sized vesicles can be further classified (eg, exosomes, microvesicles) based on their biogenesis, size, and biophysical properties Although initially thought to be cellular debris, and thus under-appreciated, EVs are now increasingly recognized as important vehicles of intercellular communication and circulating biomarkers for disease diagnoses and prognosis Despite their clinical potential, the lack of sensitive preparatory and analytical technologies for EVs poses a barrier to clinical translation New analytical platforms including molecular ones are thus actively being developed to address these challenges Recent advances in the field are expected to have far-reaching impact in both basic and translational studies This article aims to present a comprehensive and critical overview of emerging analytical technologies for EV detection and their clinical applications

902 citations

Journal ArticleDOI
TL;DR: This review presents a summary of the hierarchical features for articular cartilage and diarthrodial joints and tables of known material properties for cartilage to summarize how the multi-scale interactions in articular Cartilage provide for its unique material properties and tribological characteristics.

886 citations