scispace - formally typeset
Search or ask a question
Author

Wayne P. Sousa

Bio: Wayne P. Sousa is an academic researcher. The author has contributed to research in topics: Spatial ecology. The author has an hindex of 1, co-authored 1 publications receiving 2224 citations.
Topics: Spatial ecology

Papers
More filters
Journal Article•DOI•
TL;DR: For many communities, a self-reproducing climax state may only exist as an average condition on a relatively large spatial scale, and even that has yet to be rigorously demonstrated.
Abstract: Two features characterize all natural communities. First, they are dynamic systems. The densities and age-structures of populations change with time, as do the relative abundances of species; local extinctions are commonplace (37). For many communities, a self-reproducing climax state may only exist as an average condition on a relatively large spatial scale, and even that has yet to be rigorously demonstrated (36). The idea that equilibrium is rarely achieved on the local scale was expressed decades ago by a number of forest ecologists (e.g. 10 1, 168). One might even argue that continued application of the concept of climax to natural systems is simply an exercise in metaphysics (41). While this view may seem extreme, major climatic shifts often recur at time intervals shorter than that required for a community to reach competitive equilibrium or alter the geographical distributions of species (6, 21, 43, 76, 92). Climatic variation of this kind influences ecological patterns over large areas, sometimes encompassing entire continents. Other agents of temporal change in natural communities operate over a wide range of smaller spatial scales (47, 242). Second, natural communities are spatially heterogeneous. This statement is true at any scale of resolution (242), but it is especially apparent on what is commonly referred to as the regional scale. (By region I mean an area that potentially encompasses more than one colonizable patch.) Across any land or seascape, one observes a mosaic of patches identified by spatial discontinuities in the distributions of populations (153, 159, 161, 231, 239, 240). Closer examination often reveals a smaller-scale patchwork of same-aged individuals (e.g. 85-87, 101, 146, 199,204,217-220,235,246). Discrete patch boundaries sometimes reflect species-specific responses to

2,312 citations


Cited by
More filters
Book•
01 Sep 2011
TL;DR: In this paper, the Ecosystem Concept is used to describe the Earth's Climate System and Geology and Soils, and the ecosystem concept is used for managing and sustaining ecosystems.
Abstract: I. CONTEXT * The Ecosystem Concept * Earth's Climate System * Geology and Soils * II. MECHANISMS * Terrestrial Water and Energy Balance * Carbon Input to Terrestrial Ecosystems * Terrestrial Production Processes * Terrestrial Decomposition * Terrestrial Plant Nutrient Use * Terrestrial Nutrient Cycling * Aquatic Carbon and Nutrient Cycling * Trophic Dynamics * Community Effects on Ecosystem Processes * III. PATTERNS * Temporal Dynamics * Landscape Heterogeneity and Ecosystem Dynamics * IV. INTEGRATION * Global Biogeochemical Cycles * Managing and Sustaining Ecosystem * Abbreviations * Glossary * References

3,086 citations

Journal Article•DOI•
TL;DR: The natural disturbance regime is now unlikely to persist within conser- vation area since fragmentation and human intervention have usually modified physical and biotic conditionx Active management decisions must now be made on what distur- bance regime is require and this requires decisions on what species are to be encouraged or discouraged.
Abstract: Preservation of natural communities has historically consisted of measures protecting them from physical disturbance. Timber harvests and livestock grazing are usually excluded from preserves, and fire suppression has been practiced—within the U.S. system of national parks, for example. Ecologists and conservationists have come to recognize, however, that many forms of disturbance are important components of natural systems. Many plant communities and species are dependent on disturbance, especially for regeneration (Pickett & White 1985). Preserves should be large enough to allow the natural disturbance regime to operate and to support a mosaic of patches in different stages of disturbance, successional recovery, and community maturation (Pickett & Thompson 1978).

2,370 citations

Book•
C. S. Reynolds1•
29 May 2006
TL;DR: Reynolds as discussed by the authors provides basic information on composition, morphology and physiology of the main phyletic groups represented in marine and freshwater systems and reviews recent advances in community ecology, developing an appreciation of assembly processes, co-existence and competition, disturbance and diversity.
Abstract: Communities of microscopic plant life, or phytoplankton, dominate the Earth's aquatic ecosystems. This important new book by Colin Reynolds covers the adaptations, physiology and population dynamics of phytoplankton communities in lakes and rivers and oceans. It provides basic information on composition, morphology and physiology of the main phyletic groups represented in marine and freshwater systems and in addition reviews recent advances in community ecology, developing an appreciation of assembly processes, co-existence and competition, disturbance and diversity. Although focussed on one group of organisms, the book develops many concepts relevant to ecology in the broadest sense, and as such will appeal to graduate students and researchers in ecology, limnology and oceanography.

1,856 citations

Book•
17 Mar 1996

1,701 citations

Journal Article•DOI•
TL;DR: In this paper, the authors define disturbance in stream ecosystems to be: any relatively discrete event in time that is characterized by a frequency, intensity, and severity outside a predictable range, and that disrupts ecosystem, community, or population structure and changes resources or the physical environment.
Abstract: We define disturbance in stream ecosystems to be: any relatively discrete event in time that is characterized by a frequency, intensity, and severity outside a predictable range, and that disrupts ecosystem, community, or population structure and changes resources or the physical environment. Of the three major hypotheses relating disturbance to lotic community structure, the dynamic equilibrium hypothesis appears to be generally applicable, although specific studies support the intermediate disturbance hypothesis and the equilibrium model. Differences in disturbance frequency between lentic and lotic systems may explain why biotic interactions are more apparent in lakes than in streams. Responses to both natural and anthropogenic disturbances vary regionally, as illustrated by examples from the mid-continent, Pacific northwest, and southeastern United States. Based on a generalized framework of climatic-biogeochemical characteristics, two features are considered to be most significant in choosing streams...

1,564 citations