scispace - formally typeset
Search or ask a question
Author

Wayne V. Sorin

Bio: Wayne V. Sorin is an academic researcher from Hewlett-Packard. The author has contributed to research in topics: Optical fiber & Single-mode optical fiber. The author has an hindex of 37, co-authored 209 publications receiving 5846 citations. Previous affiliations of Wayne V. Sorin include University of Melbourne & Stanford University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a network-based model of power consumption in optical IP networks and use this model to estimate the energy consumption of the Internet, including the core, metro and edge, access and video distribution networks, and take into account energy consumption in switching and transmission equipment.
Abstract: As community concerns about global energy consumption grow, the power consumption of the Internet is becoming an issue of increasing importance. In this paper, we present a network-based model of power consumption in optical IP networks and use this model to estimate the energy consumption of the Internet. The model includes the core, metro and edge, access and video distribution networks, and takes into account energy consumption in switching and transmission equipment. We include a number of access technologies, including digital subscriber line with ADSL2+, fiber to the home using passive optical networks, fiber to the node combined with very high-speed digital subscriber line and point-to-point optical systems. In addition to estimating the power consumption of today's Internet, we make predictions of power consumption in a future higher capacity Internet using estimates of improvements in efficiency in coming generations of network equipment. We estimate that the Internet currently consumes about 0.4% of electricity consumption in broadband-enabled countries. While the energy efficiency of network equipment will improve, and savings can be made by employing optical bypass and multicast, the power consumption of the Internet could approach 1% of electricity consumption as access rates increase. The energy consumption per bit of data on the Internet is around 75\bm muJ at low access rates and decreases to around 2-4 \bm muJ at an access rate of 100 Mb/s.

523 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on time-division multiplexing (TDM)-PON and wavelength-division M-PON, which will be the most promising candidates for practical future systems, and the combination of future data-rate projections and traffic patterns coupled with recent advances in WDM technology may result in the preferred solution for future proof fiber-based access network.
Abstract: Traffic patterns in access networks have evolved from voice- and text-oriented services to video- and image-based services. This change will require new access networks that support high-speed (> 100 Mb/s), symmetric, and guaranteed bandwidths for future video services with high-definition TV quality. To satisfy the required bandwidth over a 20-km transmission distance, single-mode optical fiber is currently the only practical choice. To minimize the cost of implementing an FTTP solution, a passive optical network (PON) that uses a point-to-multipoint architecture is generally considered to be the best approach. There are several multiple-access techniques to share a single PON architecture, and the authors addressed several of these approaches such as time-division multiple access, wavelength-division multiple access, subcarrier multiple access, and code-division multiple access. Among these multiple techniques, they focus on time-division multiplexing (TDM)-PON and wavelength-division multiplexing (WDM)-PON, which will be the most promising candidates for practical future systems. A TDM-PON shares a single-transmission channel with multiple subscribers in time domain. Then, there exists tight coupling between subscribers. A WDM-PON provides point-to-point optical connectivity using a dedicated pair of wavelengths per user. While a TDM-PON appears to be a satisfactory solution for current bandwidth demands, the combination of future data-rate projections and traffic patterns coupled with recent advances in WDM technology may result in WDM-PON becoming the preferred solution for a future proof fiber-based access network

465 citations

Patent
06 Nov 1991
TL;DR: In this article, an optical coherence-domain reflectometry system provides an interferometer driven by a broadband incoherent light source with the device under test connected to one arm of the interferometers and a movable scanning mirror in the other arm providing a reference signal.
Abstract: An optical coherence-domain reflectometry system provides an interferometer driven by a broadband incoherent light source with the device under test connected to one arm of the interferometer and a movable scanning mirror in the other arm providing a reference signal. The mirror moves at a controlled velocity to produce a Doppler shift in the reference signal frequency. The reference signal arm also includes a piezoelectric transducer which modulates the phase of the reference signal at a given frequency, causing a further shift in the reference signal frequency. The interference signal is detected and measured by a polarization diversity receiver. A linear polarizer in the reference signal arm is adjusted to produce equal reference signal powers in each arm of the polarization diversity receiver in the absence of a reflection signal from the test arm. The measured reflectometry signal is substantially independent of the state of polarization of the reflected signal from the device under test.

252 citations

Journal ArticleDOI
TL;DR: In this article, the authors review technologies and architectures for WDM optical IP networks from the viewpoint of capital expenditure and network energy consumption, and show how requirements of low cost and low energy consumption can influence the choice of switching technologies as well as the overall network architecture.
Abstract: We review technologies and architectures for WDM optical IP networks from the viewpoint of capital expenditure and network energy consumption. We show how requirements of low cost and low energy consumption can influence the choice of switching technologies as well as the overall network architecture.

245 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that attenuating the reference power in an optical low-coherence reflectometry (OLCR) measurement, the reflection sensitivity can be improved, even though, in many other types of optical measurements, sensitivity is improved as optical power is increased.
Abstract: It is shown that by attenuating the reference power in an optical low-coherence reflectometry (OLCR) measurement, the reflection sensitivity can be improved, even though, in many other types of optical measurements, sensitivity is improved as optical power is increased. The difference is due to the presence of inherent intensity noise associated with low-coherence sources, which can dominate over shot noise at optical powers that are as low as 1 mu W. A reflection sensitivity of -146 dB is demonstrated using this technique. >

225 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A metasurface platform based on high-contrast dielectric elliptical nanoposts that provides complete control of polarization and phase with subwavelength spatial resolution and an experimentally measured efficiency ranging from 72% to 97%, depending on the exact design.
Abstract: Metasurfaces are planar structures that locally modify the polarization, phase and amplitude of light in reflection or transmission, thus enabling lithographically patterned flat optical components with functionalities controlled by design. Transmissive metasurfaces are especially important, as most optical systems used in practice operate in transmission. Several types of transmissive metasurface have been realized, but with either low transmission efficiencies or limited control over polarization and phase. Here, we show a metasurface platform based on high-contrast dielectric elliptical nanoposts that provides complete control of polarization and phase with subwavelength spatial resolution and an experimentally measured efficiency ranging from 72% to 97%, depending on the exact design. Such complete control enables the realization of most free-space transmissive optical elements such as lenses, phase plates, wave plates, polarizers, beamsplitters, as well as polarization-switchable phase holograms and arbitrary vector beam generators using the same metamaterial platform.

2,126 citations

Journal ArticleDOI
TL;DR: It is shown that FDOCT systems have a large sensitivity advantage and allow for sensitivities well above 80dB, even in situations with low light levels and high speed detection.
Abstract: In this article we present a detailed discussion of noise sources in Fourier Domain Optical Coherence Tomography (FDOCT) setups. The performance of FDOCT with charge coupled device (CCD) cameras is compared to current standard time domain OCT systems. We describe how to measure sensitivity in the case of FDOCT and confirm the theoretically obtained values. It is shown that FDOCT systems have a large sensitivity advantage and allow for sensitivities well above 80dB, even in situations with low light levels and high speed detection.

2,104 citations

Journal ArticleDOI
TL;DR: This article reviews the recent progress in optical biosensors that use the label-free detection protocol, in which biomolecules are unlabeled or unmodified, and are detected in their natural forms, and focuses on the optical biosENSors that utilize the refractive index change as the sensing transduction signal.

2,060 citations

Book
01 Jan 1960

1,106 citations

Journal ArticleDOI
TL;DR: It is derived and shown experimentally that frequency- domain ranging provides a superior signal-to-noise ratio compared with conventional time-domain ranging as used in optical coherence tomography.
Abstract: We demonstrate high-speed, high-sensitivity, high-resolution optical imaging based on optical frequency-domain interferometry using a rapidly-tuned wavelength-swept laser. We derive and show experimentally that frequency-domain ranging provides a superior signal-to-noise ratio compared with conventional time-domain ranging as used in optical coherence tomography. A high sensitivity of -110 dB was obtained with a 6 mW source at an axial resolution of 13.5 microm and an A-line rate of 15.7 kHz, representing more than an order-of-magnitude improvement compared with previous OCT and interferometric imaging methods.

1,067 citations