scispace - formally typeset
Search or ask a question
Author

Wayne W. Lam

Bio: Wayne W. Lam is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Diode & Varicap. The author has an hindex of 5, co-authored 9 publications receiving 341 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The bismuth microbolometer is a simple, easily made detector suitable for use throughout the far-infrared, which has been integrated with a variety of planar antennas as mentioned in this paper.
Abstract: The bismuth microbolometer is a simple, easily made detector suitable for use throughout the far-infrared, which has been integrated with a variety of planar antennas. The general thermal properties of these devices and some of the constraints on bolometer materials are discussed. The fabrication and performance of several different types of microbolometers and microthermocouples are described.

114 citations

Journal ArticleDOI
TL;DR: In this article, a simple transmission-line grid model and measured low-frequency parameters for the diodes were used to predict the measured performance over the entire capacitive bias range of the Diodes, as well as over the complete reactive tuning range provided by a reflector behind the grid, and over a wide range of frequencies form 33 GHz to 141 GHz.
Abstract: Monolithic diode grids have been fabricated on 2-cm square gallium-arsenide wafers with 1600 Schottky-barrier varactor diodes. Shorted diodes are detected with a liquid-crystal technique, and the bad diodes are removed with an ultrasonic probe. A small-aperture reflectometer that uses wavefront division interference was developed to measure the reflection coefficient of the grids. A Phase shift of 70 degrees with a 7-dB loss was obtained at 93 GHz when the bias on the diode grid was changed from -3 V to 1 V. A simple transmission-line grid model, together with the measured low-frequency parameters for the diodes, was shown to predict the measured performance over the entire capacitive bias range of the diodes, as well as over the complete reactive tuning range provided by a reflector behind the grid, and over a wide range of frequencies form 33 GHz to 141 GHz. This shows that the transmission-line model and the measured low-frequency diode parameters can be used to design an electronic beam-steering array and to predict its performance. An electronic beam-steering array made of a pair of grids using state-of-the-art diodes with 5- Omega series resistances would have a loss of 1.4 dB at 90 GHz. >

101 citations

Journal ArticleDOI
TL;DR: In this article, a monolithic diode grid was fabricated on 2-cm/sup 2/ gallium-arsenide wafers in a proof-of-principle test of a quasi-optical varactor millimeter-wave frequency multiplier array concept.
Abstract: Monolithic diode grid were fabricated on 2-cm/sup 2/ gallium-arsenide wafers in a proof-of-principle test of a quasi-optical varactor millimeter-wave frequency multiplier array concept. An equivalent circuit model based on a transmission-line analysis of plane wave illumination was applied to predict the array performance. The doubler experiments were performed under far-field illumination conditions. A second-harmonic conversion efficiency of 9.5% and output powers of 0.5 W were achieved at 66 GHz when the diode grid was pumped with a pulsed source at 33 GHz. This grid had 760 Schottky-barrier varactor diodes. The average series resistance was 27 Omega , the minimum capacitance was 18 fF at a reverse breakdown voltage of -3 V. The measurements indicate that the diode grid is a feasible device for generating watt-level powers at millimeter frequencies and that substantial improvement is possible by improving the diode breakdown voltage. >

88 citations

Journal ArticleDOI
TL;DR: In this paper, the beam-steering grid is a programmable reflector, where the diode bias controls the phase shift of the reflection, and the variation of the phase across the grating sets the direction of the reflected beam.
Abstract: Loading a grid with diodes offers the possibility of two-dimensional control of millimeter waves that is analogous to holography and nonlinear optics. These grids are attractive because they are suitable for monolithic integration with gallium-arsenide Schottky diodes and for high-power operation. Here we present grid designs for electronic beam-steering and harmonic generation. The beam-steering grid is a programmable reflector, where the diode bias controls the phase shift of the reflection. The variation of the phase across the grating sets the direction of the reflected beam. The reflection loss in computer simulations is 3dB at 90GHz. The harmonic-generating grid acts as a nonlinear reactive surface, where the nonlinear capacitance of the diodes produces the harmonic frequencies. Quasioptical filters select the desired harmonic. Computer simulations predict that a 65GHz-to-130GHz doubler would have an output power of 0.56W/cm2 and a conversion efficiency of 35%.

28 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed to use two-dimensional grids with oscillators and multipliers for quasi-optical coherent spatial combining of the outputs of large numbers of low-power devices.
Abstract: The authors have proposed that the increasing demand for contact watt-level coherent sources in the millimeter- and submillimeter-wave region can be satisfied by fabricating two-dimensional grids loaded with oscillators and multipliers for quasi-optical coherent spatial combining of the outputs of large numbers of low-power devices. This was first demonstrated through the successful fabrication of monolithic arrays with 2000 Schottky diodes. Watt-level power outputs were obtained in doubling to 66 GHz. In addition, a simple transmission-line model was verified with a quasi-optical reflectometer that measured the array impedance. This multiplier array work is being extended to novel tripler configurations using blocking barrier devices. The technique has also been extended to oscillator configurations where the grid structure is loaded with negative-resistance devices. This was first demonstrated using Gunn devices. More recently, a 25-element MESFET grid oscillating at 10 GHz exhibited power combining and self-locking. Currently, this approach is being extended to a 100-element monolithic array of Gunn diodes. This same approach should be applicable to planar vacuum electron devices such as the submillimeter-wave BWO (backward wave oscillator) and vacuum FET. >

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the thermal properties of mesoscopic structures is presented based on the concept of electron energy distribution, and, in particular, on controlling and probing it, and an immediate application of solidstate refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth.
Abstract: This review presents an overview of the thermal properties of mesoscopic structures. The discussion is based on the concept of electron energy distribution, and, in particular, on controlling and probing it. The temperature of an electron gas is determined by this distribution: refrigeration is equivalent to narrowing it, and thermometry is probing its convolution with a function characterizing the measuring device. Temperature exists, strictly speaking, only in quasiequilibrium in which the distribution follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur due to slow relaxation rates of the electrons, e.g., among themselves or with lattice phonons. Observation and applications of nonequilibrium phenomena are also discussed. The focus in this paper is at low temperatures, primarily below $4\phantom{\rule{0.3em}{0ex}}\mathrm{K}$, where physical phenomena on mesoscopic scales and hybrid combinations of various types of materials, e.g., superconductors, normal metals, insulators, and doped semiconductors, open up a rich variety of device concepts. This review starts with an introduction to theoretical concepts and experimental results on thermal properties of mesoscopic structures. Then thermometry and refrigeration are examined with an emphasis on experiments. An immediate application of solid-state refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth. This review concludes with a summary of pertinent fabrication methods of presented devices.

984 citations

Journal ArticleDOI
TL;DR: In this article, a periodic surface texture is used to alter the electromagnetic properties of a metal ground plane by covering the surface with varactor diodes, and a tunable impedance surface is built, in which an applied bias voltage controls the resonance frequency and the reflection phase.
Abstract: By covering a metal ground plane with a periodic surface texture, we can alter its electromagnetic properties. The impedance of this metasurface can be modeled as a parallel resonant circuit, with sheet inductance L, and sheet capacitance C. The reflection phase varies with frequency from +/spl pi/ to -/spl pi/, and crosses through 0 at the LC resonance frequency, where the surface behaves as an artificial magnetic conductor. By incorporating varactor diodes into the texture, we have built a tunable impedance surface, in which an applied bias voltage controls the resonance frequency, and the reflection phase. We can program the surface to create a tunable phase gradient, which can electronically steer a reflected beam over +/- 40/spl deg/ in two dimensions, for both polarizations. We have also found that this type of resonant surface texture can provide greater bandwidth than conventional reflectarray structures. This new electronically steerable reflector offers a low-cost alternative to a conventional phased array.

702 citations

Journal ArticleDOI
TL;DR: Active integrated antenna (AIA) technologies have been extensively studied in the past decade or so as discussed by the authors, with a brief introduction on the definition and some historical remarks on the research effort on the past decades or so.
Abstract: This paper provide a review of the active integrated antenna (AIA) technologies. After a brief introduction on the definition and some historical remarks, the paper concentrates on the research effort on the past decades or so. The AlAs are reviewed in its various functions. First, an oscillator-type AIA is presented, followed by very interesting aspects of coupled oscillator arrays for phase control. Use of an AIA concept for efficient RF front ends is described with examples on high-power amplifier AlAs. Next, a phase-conjugation-based retrodirective array is reviewed. Finally, AIA systems for receiving, transmitting, and duplexing are reviewed.

436 citations

Journal ArticleDOI
TL;DR: In this paper, the authors extended the FDTD method to include distributed electromagnetic systems with lumped elements (a hybrid system) and voltage and current sources, and derived FDTD equations that include nonlinear elements like diodes and transistors.
Abstract: The finite-difference-time-domain (FDTD) method is extended to include distributed electromagnetic systems with lumped elements (a hybrid system) and voltage and current sources. FDTD equations that include nonlinear elements like diodes and transistors are derived. Calculation of driving-point impedance is described. Comparison of FDTD calculated results with analytical results for several two-dimensional transmission-line configurations illustrates the accuracy of the method. FDTD results for a transistor model and a diode are compared with SPICE calculations. The extended FDTD method should prove useful in the design and analysis of complicated distributed systems with various active, passive, linear, and nonlinear lumped electrical components. >

365 citations

Journal ArticleDOI
Paul F. Goldsmith1
01 Nov 1992
TL;DR: The basic theory of quasi-optical Gaussian beam propagation and beam transformation by simple optical elements is summarized, and coupling to and between Gaussian beams is briefly discussed Guidelines for Gaussian optics system design are reviewed, the most important being beam truncation and matching Passive components in the terahertz frequency range based on quasioptical propagation, including polarization processors, filters, diplexers, and ferrite devices, are examined as mentioned in this paper.
Abstract: The basic theory of quasi-optical Gaussian beam propagation and beam transformation by simple optical elements is summarized, and coupling to and between Gaussian beams is briefly discussed Guidelines for Gaussian optics system design are reviewed, the most important being beam truncation and matching Passive components in the terahertz frequency range based on quasi-optical propagation, including polarization processors, filters, diplexers, and ferrite devices, are examined Some active quasi-optical devices, including multielement oscillators, frequency multipliers, and phase shifters, are described Some specific applications of quasi-optical systems are briefly described >

312 citations