scispace - formally typeset
Search or ask a question
Author

Wei Chen

Bio: Wei Chen is an academic researcher from IBM. The author has contributed to research in topics: Integrated circuit & Silicon on insulator. The author has an hindex of 3, co-authored 3 publications receiving 991 citations.

Papers
More filters
Journal ArticleDOI
01 Apr 1997
TL;DR: In this article, the key challenges in further scaling of CMOS technology into the nanometer (sub-100 nm) regime in light of fundamental physical effects and practical considerations are discussed, including power supply and threshold voltage, short-channel effect, gate oxide, high-field effects, dopant number fluctuations and interconnect delays.
Abstract: Starting with a brief review on 0.1-/spl mu/m (100 nm) CMOS status, this paper addresses the key challenges in further scaling of CMOS technology into the nanometer (sub-100 nm) regime in light of fundamental physical effects and practical considerations. Among the issues discussed are: lithography, power supply and threshold voltage, short-channel effect, gate oxide, high-field effects, dopant number fluctuations and interconnect delays. The last part of the paper discusses several alternative or unconventional device structures, including silicon-on-insulator (SOI), SiGe MOSFET's, low-temperature CMOS, and double-gate MOSFET's, which may lead to the outermost limits of silicon scaling.

861 citations

Patent
Wei Chen1, Devendra K. Sadana1, Yuan Taur1
03 Jul 1996
TL;DR: In this paper, an integrated circuit incorporating a substrate, a layer of insulator, and silicon having raised mesas and thin regions there between to provide ohmic conduction between mesas, electronic devices, and interconnection wiring is described.
Abstract: An integrated circuit is described incorporating a substrate, a layer of insulator, a layer of silicon having raised mesas and thin regions therebetween to provide ohmic conduction between mesas, electronic devices on the mesas, and interconnection wiring. The invention overcomes the problem of a floating gate due to charge accumulation below the channel of MOS FET's.

123 citations

Proceedings ArticleDOI
Wei Chen1, Yuan Taur1, D. K. Sadana1, Keith Jenkins1, J.Y.-C. Sun1, Stephan A. Cohen1 
11 Jun 1996
TL;DR: In this paper, a linked-body SOI-CMOS device structure was proposed to suppress the unwanted SOI floating-body effects, yet retaining all the speed advantage of SOI devices.
Abstract: A novel "linked-body" SOI-CMOS device structure is presented. This structure suppresses the unwanted SOI floating-body effects, yet retaining all the speed advantage of SOI devices. It has much better short-channel effect and very low off-state current compared with regular SOI devices for digital applications, and has no "kink" in the I-V curves for analog applications. Excellent ring oscillator performance, improved breakdown characteristics, and absence of transient drain-current overshoot are demonstrated in linked-body SOI devices.

42 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Abstract: Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success...

5,711 citations

Book
Yuan Taur1, Tak H. Ning1
01 Jan 2016
TL;DR: In this article, the authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices.
Abstract: Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally-renowned authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model, and SiGe-base bipolar devices.

2,680 citations

Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Journal ArticleDOI
01 Apr 1999
TL;DR: In this paper, the basic physics of single-electron devices, as well as their current and prospective applications are reviewed, and some byproduct ideas which may revolutionize random access memory and digital-data-storage technologies are presented.
Abstract: The goal of this paper is to review in brief the basic physics of single-election devices, as well as their-current and prospective applications. These devices based on the controllable transfer of single electrons between small conducting "islands", have already enabled several important scientific experiments. Several other applications of analog single-election devices in unique scientific instrumentation and metrology seem quite feasible. On the other hand, the prospect of silicon transistors being replaced by single-electron devices in integrated digital circuits faces tough challenges and remains uncertain. Nevertheless, even if this replacement does not happen, single electronics will continue to play an important role by shedding light on the fundamental size limitations of new electronic devices. Moreover, recent research in this field has generated some by-product ideas which may revolutionize random-access-memory and digital-data-storage technologies.

1,451 citations

Journal ArticleDOI
David J. Frank1, R.H. Dennard1, E. J. Nowak1, Paul M. Solomon1, Yuan Taur1, Hon-Sum Philip Wong1 
01 Mar 2001
TL;DR: The end result is that there is no single end point for scaling, but that instead there are many end points, each optimally adapted to its particular applications.
Abstract: This paper presents the current state of understanding of the factors that limit the continued scaling of Si complementary metal-oxide-semiconductor (CMOS) technology and provides an analysis of the ways in which application-related considerations enter into the determination of these limits. The physical origins of these limits are primarily in the tunneling currents, which leak through the various barriers in a MOS field-effect transistor (MOSFET) when it becomes very small, and in the thermally generated subthreshold currents. The dependence of these leakages on MOSFET geometry and structure is discussed along with design criteria for minimizing short-channel effects and other issues related to scaling. Scaling limits due to these leakage currents arise from application constraints related to power consumption and circuit functionality. We describe how these constraints work out for some of the most important application classes: dynamic random access memory (DRAM), static random access memory (SRAM), low-power portable devices, and moderate and high-performance CMOS logic. As a summary, we provide a table of our estimates of the scaling limits for various applications and device types. The end result is that there is no single end point for scaling, but that instead there are many end points, each optimally adapted to its particular applications.

1,417 citations