scispace - formally typeset
Search or ask a question
Author

Wei Chen

Bio: Wei Chen is an academic researcher from Central South University. The author has contributed to research in topics: Leaching (metallurgy) & Scheelite. The author has an hindex of 14, co-authored 49 publications receiving 839 citations.

Papers
More filters
Journal ArticleDOI
Fuhua Yang1, Zhian Zhang1, Ke Du1, Xingxing Zhao1, Wei Chen1, Yanqing Lai1, Jie Li1 
01 Sep 2015-Carbon
TL;DR: In this article, nitrogen-doped carbon sheets (NCSs) were successfully synthesized using graphene and dopamine as template and carbon precursor, respectively, achieving high reversible capacity and excellent rate performance.

176 citations

Journal ArticleDOI
Zhian Zhang1, Guanchao Wang1, Yanqing Lai1, Jie Li1, Zhiyong Zhang1, Wei Chen1 
TL;DR: Li et al. as discussed by the authors presented a separator with nitrogen-doped porous hollow carbon sphere (NHC) coating, with which Li-S cells enormously improved the utilization of active material and enhance excellent electrochemical performance.

120 citations

Journal ArticleDOI
TL;DR: In this article, the up-to-date spectroscopic techniques for landfill leachate characterization and advanced oxidation treatment are highlighted, along with the future perspectives in the development of characterization and treatment approaches.

118 citations

Journal ArticleDOI
Yun Fu1, Zhian Zhang1, Xing Yang1, Yongqin Gan1, Wei Chen1 
TL;DR: In this article, a novel zinc sulfide/porous carbon composite (ZnS/PC) with ZnS nanoparticles finely embedded in porous carbon matrices is achieved by virtue of the metal-organic frameworks (MOFs) strategy.
Abstract: In situ synthesis of a novel zinc sulfide/porous carbon composite (ZnS/PC) with ZnS nanoparticles finely embedded in porous carbon matrices is achieved by virtue of the metal–organic frameworks (MOFs) strategy. The as-obtained ZnS/PC exhibits significant electrochemical performance as an anode material for lithium ion batteries.

78 citations

Journal ArticleDOI
Zhian Zhang1, Qiang Li1, Kai Zhang1, Wei Chen1, Yanqing Lai1, Jie Li1 
TL;DR: In this article, the authors synthesized a TiO 2 -grafted carbon paper (CP@TiO 2 ) by pyrolysis of tetrabutyl-titanate-treated filter paper, which is a superior material for immobilising sulfur as a flexible freestanding electrode for lithium-sulfur (Li-S) batteries.

78 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

3,009 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the recent progress in high-sulfur-loading Li-S batteries enabled by hierarchical design principles at multiscale, particularly, basic insights into the interfacial reactions, strategies for mesoscale assembly, unique architectures, and configurational innovation in the cathode, anode, and separator.
Abstract: Owing to high specific energy, low cost, and environmental friendliness, lithium–sulfur (Li–S) batteries hold great promise to meet the increasing demand for advanced energy storage beyond portable electronics, and to mitigate environmental problems. However, the application of Li–S batteries is challenged by several obstacles, including their short life and low sulfur utilization, which become more serious when sulfur loading is increased to the practically accepted level above 3–5 mg cm−2. More and more efforts have been made recently to overcome the barriers toward commercially viable Li–S batteries with a high sulfur loading. This review highlights the recent progress in high-sulfur-loading Li–S batteries enabled by hierarchical design principles at multiscale. Particularly, basic insights into the interfacial reactions, strategies for mesoscale assembly, unique architectures, and configurational innovation in the cathode, anode, and separator are under specific concerns. Hierarchy in the multiscale design is proposed to guide the future development of high-sulfur-loading Li–S batteries.

1,364 citations

Journal ArticleDOI
TL;DR: The Li-S battery is a complex device and its useful energy density is determined by a number of design parameters, most of which are often ignored, leading to the failure to meet commercial requirements, so how to pave the way for reliableLi-S batteries is discussed.
Abstract: Lithium-sulfur (Li-S) batteries have attracted tremendous interest because of their high theoretical energy density and cost effectiveness. The target of Li-S battery research is to produce batteries with a high useful energy density that at least outperforms state-of-the-art lithium-ion batteries. However, due to an intrinsic gap between fundamental research and practical applications, the outstanding electrochemical results obtained in most Li-S battery studies indeed correspond to low useful energy densities and are not really suitable for practical requirements. The Li-S battery is a complex device and its useful energy density is determined by a number of design parameters, most of which are often ignored, leading to the failure to meet commercial requirements. The purpose of this review is to discuss how to pave the way for reliable Li-S batteries. First, the current research status of Li-S batteries is briefly reviewed based on statistical information obtained from literature. This includes an analysis of how the various parameters influence the useful energy density and a summary of existing problems in the current Li-S battery research. Possible solutions and some concerns regarding the construction of reliable Li-S batteries are comprehensively discussed. Finally, insights are offered on the future directions and prospects in Li-S battery field.

1,269 citations

Journal ArticleDOI
TL;DR: The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li-S batteries is reviewed here and the relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li -S batteries are discussed.
Abstract: Lithium-sulfur (Li-S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li-S battery systems. The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li-S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li-S batteries are discussed. Nanostructured metal oxides/sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium-metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li-S batteries with nanostructured metal oxides/sulfides are also discussed.

1,243 citations

Journal ArticleDOI
TL;DR: A wide range of applications based on these materials for ORR, OER, HER and multifunctional electrocatalysis are discussed, with an emphasis on the required features of MOF-derived carbon-based materials for the Electrocatalysis of corresponding reactions.
Abstract: Oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are three key reactions for the development of green and sustainable energy systems. Efficient electrocatalysts for these reactions are highly desired to lower their overpotentials and promote practical applications of related energy devices. Metal–organic frameworks (MOFs) have recently emerged as precursors to fabricate carbon-based electrocatalysts with high electrical conductivity and uniformly distributed active sites. In this review, the current progress of MOF-derived carbon-based materials for ORR/OER/HER electrocatalysis is presented. Materials design strategies of MOF-derived carbon-based materials are firstly summarized to show the rich possibilities of the morphology and composition of MOF-derived carbon-based materials. A wide range of applications based on these materials for ORR, OER, HER and multifunctional electrocatalysis are discussed, with an emphasis on the required features of MOF-derived carbon-based materials for the electrocatalysis of corresponding reactions. Finally, perspectives on the development of MOF-derived carbon-based materials for ORR, OER and HER electrocatalysis are provided.

970 citations