scispace - formally typeset
Search or ask a question
Author

Wei-Da Guo

Bio: Wei-Da Guo is an academic researcher from National Taiwan University. The author has contributed to research in topics: Signal integrity & Signal. The author has an hindex of 14, co-authored 20 publications receiving 441 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented a design methodology of analysis scheme to extract the equivalent circuits of discontinuities observed on the strongly coupled differential lines and simulated the integrity effects of the bent differential transmission lines in a high-speed digital circuit.
Abstract: Differential signaling has become a popular choice for multigigabit digital applications in favor of its low-noise generation and high common-mode noise immunity. Recalling from the full-wave solution of S-parameters, this paper presented a design methodology of analysis scheme to extract the equivalent circuits of discontinuities observed on the strongly coupled differential lines. Signal integrity effects of the bent differential transmission lines in a high-speed digital circuit were then simulated in the time domain. A dual back-to-back routing topology of bent differential lines to reduce the common-mode noise was further investigated. To alleviate the common-mode noise at the receiver, a novel compensation scheme in use of the shunt capacitance was also proposed. Furthermore, the comparison between the simulation and measured results validated the equivalent circuit model, coupled bends with compensation capacitance patch, and analysis approach

82 citations

Journal ArticleDOI
TL;DR: In this paper, an efficient Delaunay-Voronoi modeling of the power-ground planes suitable directly for SPICE compatibity is proposed to deal with the ground bounce noise and decoupling capacitors placement problems for the high-speed digital system designs.
Abstract: An efficient Delaunay-Voronoi modeling of the power-ground planes suitable directly for SPICE compatibity is proposed to deal with the ground bounce noise and decoupling capacitors placement problems for the high-speed digital system designs. The model consists of virtual ports and triangular meshes with the lumped circuit elements, in which all the element values can be related to the mesh geometry shape by the analogy between the circuit equations and Maxwell's equations. Since the analogy fails to apply due to the singular fields near the input/output pins, the via effect of driving and sensing ports is not negligible and an analytical expression from the Hankel function is thus presented for the correction term. A simple rule has been investigated for the model with minimum lumped circuit elements to accurately represent the power-ground planes over the frequency range of interests. The full-wave simulation and measurement results verify the good correlations with the proposed models for the impedance responses of regular and defective plane shapes.

49 citations

Journal ArticleDOI
TL;DR: In this paper, the split power planes with electromagnetic bandgap structures enhancement are proposed for the wideband suppression of ground bounce noise in high-speed printed circuit boards, and a systematic design procedure is presented, featuring a modified analytic design formula, a novel compact electromagnetic band gap layout and a discussion on the minimum number of cascaded rows.
Abstract: In this paper, the split power planes with electromagnetic bandgap structures enhancement is proposed for the wideband suppression of ground bounce noise in high-speed printed circuit boards. A systematic design procedure is presented, featuring a modified analytic design formula, a novel compact electromagnetic bandgap layout, and a discussion on the minimum number of cascaded rows. As it is capable of selectively suppressing the ground bounce noise at several desired frequencies, the approach is applied to deal with the coupled noise between two isolation islands and the ground bounce noise induced by signal line crossing the split power planes. Successful noise suppression over an ultrawide band from dc to 5 GHz and reduction of the peak ground bounce noise in the time domain by 75% by an electromagnetic bandgap strip 1.44 cm wide is demonstrated. Good agreement is seen from the comparison between simulation and experimental results

47 citations

Journal ArticleDOI
TL;DR: In this paper, a fast methodology that employs only two anti-polarity one-bit data patterns instead of the pseudo-random bit sequence as input sources to simulate the worst-case eye diagram was proposed.
Abstract: As the speed of signal through an interconnection increases toward the multigigabit ranges, the effects of lossy transmission lines on the signal quality of printed circuit boards becomes a critical issue. To evaluate the eye diagram and thus the signal integrity in the modern digital systems, this paper proposes a fast methodology that employs only two anti-polarity one-bit data patterns instead of the pseudo-random bit sequence as input sources to simulate the worst-case eye diagram. Analytic expressions are derived for the impulse response of the lossy transmission lines due to the skin-effect loss, while the Kramers-Kronig relations are employed to deal with the noncausal problem related to the dielectric loss. Two design graphs that can be used to rapidly predict the eye diagram characteristics versus the conductive and dielectric losses are then constructed and based on which, the maximally usable length of transmission lines under a certain signal specification can be easily acquired. At last, the time-domain simulations and experiments are implemented to verify the exactitude of proposed concept.

40 citations

Journal ArticleDOI
TL;DR: In this article, a numerical formula is proposed to quantitatively predict the voltage levels of the saturated near-end and far-end propagating crosstalk noises among the sections of differential delay lines.
Abstract: In contrast to the commonly employed single-ended delay lines, the employment of differential signaling may alleviate the occurrence of crosstalk and improve the signal integrity. This paper qualitatively investigates the time-domain reflection (TDR) and time-domain transmission (TDT) waveforms for the single-ended and differential delay lines with the serpentine and flat spiral routing schemes. A numerical formula is then proposed to quantitatively predict the voltage levels of the saturated near-end and far-end propagating crosstalk noises among the sections of differential delay lines. Signal waveforms and eye diagrams of the four basic routing schemes are obtained by HSPICE simulations, demonstrating that the combination of differential signaling and flat spiral layouts can exhibit the best delay-line performance. Furthermore, both the TDR and TDT measurements for differential delay lines are performed to validate the exactitude of proposed analyses.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper reviews recent progress and future directions of signal integrity design for high-speed digital circuits, focusing on four areas: signal propagation on transmission lines, discontinuity modeling and characterization, measurement techniques, and link-path design and analysis.
Abstract: This paper reviews recent progress and future directions of signal integrity design for high-speed digital circuits, focusing on four areas: signal propagation on transmission lines, discontinuity modeling and characterization, measurement techniques, and link-path design and analysis.

230 citations

Journal ArticleDOI
TL;DR: In this paper, a new approach is proposed to reject certain bands within the passband of an ultra-wideband planar monopole antenna, which utilizes a mushroom-type electromagnetic-bandgap (EBG) structure.
Abstract: A new approach is proposed to reject certain bands within the passband of an ultra-wideband planar monopole antenna. The proposed approach that utilizes a mushroom-type electromagnetic-bandgap (EBG) structure is proven to be an effective way for band-notched designs. The approach has many advantages, such as notch-frequency tunability, notch-band width controllable capacity, efficient dual-notch design, and stable radiation patterns. Several design examples using conventional mushroom-type EBG and edge-located vias mushroom-type EBG are presented. The examples exhibit good bandstop characteristics to reject the wireless local-area network interference bands (5.2- and 5.8-GHz bands). Besides, the causes that lead to the discrepancies between the simulations and measurements are discussed.

180 citations

Journal ArticleDOI
TL;DR: The fundamentals and latest progress of modeling, analysis, and design technologies for signal integrity and electromagnetic compatibility on PCB and package in the past decades are reviewed and the necessity of practical training of designers is mentioned.
Abstract: This paper reviews the fundamentals and latest progress of modeling, analysis, and design technologies for signal integrity and electromagnetic compatibility on PCB and package in the past decades. Most results in this field are based on the very rich and highly educational literature produced by Prof. C. Paul in his long scientific career. The inclusion of parameters variability effects is also considered, and it is demonstrated how statistical simulations can become affordable by means of recently-introduced stochastic methods. Finally, the necessity of practical training of designers is mentioned, and an experience relying on realistic PCB demonstrators is illustrated.

166 citations

Journal ArticleDOI
01 Feb 2013
TL;DR: This paper provides a comprehensive review of different DGTD schemes, highlighting the fundamental issues arising in each step of constructing a D GTD system, as well as the implementation of different time-stepping schemes.
Abstract: Efficient multiscale electromagnetic simulations require several major challenges that need to be addressed, such as flexible and robust geometric modeling schemes, efficient and stable time-stepping methods, etc. Due to the versatile choices of spatial discretization and temporal integration, discontinuous Galerkin time-domain (DGTD) methods can be very promising in simulating transient multiscale problems. This paper provides a comprehensive review of different DGTD schemes, highlighting the fundamental issues arising in each step of constructing a DGTD system. The issues discussed include the selection of governing equations for transient electromagnetic analysis, different basis functions for spatial discretization, as well as the implementation of different time-stepping schemes. Numerical examples demonstrate the advantages of DGTD for multiscale electromagnetic simulations.

163 citations

Journal ArticleDOI
TL;DR: Overall, DNN regression is superior to support vector regression in predicting the eye-diagram metrics, and the impact of various tunable parameters, optimization methods, and data preprocessing on both the learning speed and the prediction accuracy for the support vector and DNN regressions is investigated.
Abstract: In this work, machine learning methods are applied to high-speed channel modeling for signal integrity analysis. Linear, support vector, and deep neural network (DNN) regressions are adopted to predict the eye-diagram metrics, taking advantage of the massive amounts of simulation data gathered from prior designs. The regression models, once successfully trained, can be used to predict the performance of high-speed channels based on various design parameters. The proposed learning-based approach saves complex circuit simulations and substantial domain knowledge altogether, in contrast to alternatives that exploit novel numerical techniques or advanced hardware to speed up traditional simulations for signal integrity analysis. Our numerical examples suggest that both support vector and DNN regressions are able to capture the nonlinearities imposed by transmitter and receiver models in high-speed channels. Overall, DNN regression is superior to support vector regression in predicting the eye-diagram metrics. Moreover, we also investigate the impact of various tunable parameters, optimization methods, and data preprocessing on both the learning speed and the prediction accuracy for the support vector and DNN regressions.

93 citations