scispace - formally typeset
Search or ask a question
Author

Wei Gao

Bio: Wei Gao is an academic researcher from Tohoku University. The author has contributed to research in topics: Grating & Interferometry. The author has an hindex of 37, co-authored 331 publications receiving 4739 citations. Previous affiliations of Wei Gao include National Institute of Advanced Industrial Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of measurement technologies for precision positioning in manufacturing industries is presented, followed by a discussion on traceability and standards, and some advanced applications of measurement technology for manufacturing industries.
Abstract: Precision positioning of an object relative to a reference point is a common task in many activities of production engineering. Sensor technologies for single axis measurement, either linear or rotary, which form the fundamentals of measurement technologies for precision positioning, are reviewed. Multi-axis coordinate measurement methods such as triangulation and multilateration, as well as Cartesian and polar systems for specifying the position in a plane or three-dimensional (3D) space are then presented, followed by a discussion on traceability and standards. Some advanced applications of measurement technologies for precision positioning in manufacturing industries are also demonstrated.

340 citations

Journal ArticleDOI
TL;DR: In this article, a diamond turning with a fast tool servo (FTS) was used to fabricate a large area sinusoidal grid surface, which is used as the measurement reference of a surface encoder for multi-axis position measurement.
Abstract: This paper describes the fabrication of a large area sinusoidal grid surface, which is used as the measurement reference of a surface encoder for multi-axis position measurement. The profile of the grid surface is a superposition of sinusoidal waves in the X-direction and the Y-direction with spatial wavelengths of 100 μm and amplitudes of 100 nm. Diamond turning with a fast tool servo (FTS) was chosen as the fabrication method. The constructed FTS, which employs a piezoelectric tube actuator (PZT) to actuate the diamond tool and a capacitance probe as the feedback sensor, was confirmed to have a bandwidth of approximately 2.5 kHz and a tool displacement accuracy of several nanometers in the closed-loop mode. Experiments of fabricating the sinusoidal grid surface were performed on a commercially available precision diamond turning machine. An aluminum alloy workpiece was vacuum chucked on the spindle and the FTS was mounted on the X-slide. Efforts were made to position the tool tip to the center of the spindle (center-alignment) since it was verified that the center-alignment is important for the fabrication accuracy of the sinusoidal grid surface. An evaluation technique based on the two-dimensional (2D) discrete Fourier transform (DFT) of interference microscope images was also developed to evaluate the fabricated grid surface effectively. The fabrication result of a grid surface over an area of ∅ 150 mm has indicated the effectiveness of the fabrication system.

281 citations

Journal ArticleDOI
TL;DR: Error separation algorithms for removing machine tool errors, which is specially required in on-machine and in-process surface metrology, are overviewed, followed by a discussion on calibration and traceability.

232 citations

Journal ArticleDOI
TL;DR: In this article, a surface motor-driven XY planar motion stage equipped with a newly developed XYθ Z surface encoder for sub-micron positioning is described, where the surface motor consists of four linear motors placed on the same surface, two pairs in the XY -axes.
Abstract: This paper describes a surface motor-driven XY planar motion stage equipped with a newly developed XYθ Z surface encoder for sub-micron positioning. The surface motor consists of four linear motors placed on the same surface, two pairs in the XY -axes. The magnetic array and the stator winding of the linear motor are mounted on the platen (the moving element) and the stage base, respectively. The platen can be moved in the X -direction by the X -linear motors, and in the Y -direction by the Y -linear motors. It can also be rotated about the Z -axis if the X - or Y -linear motors generate a moment about the Z -axis. The surface encoder consists of two two-dimensional angle sensors and an angle grid with two-dimensional sinusoidal waves on its surface. The angle grid is mounted on the platen of the stage which is levitated by air-bearings. The angle sensors and the air-bearing pads are fixed on the stage base so that the motion of the platen is not affected by the electronic cables and air hoses. The XY -positions and θ Z rotation of the platen can be obtained from the angle sensor outputs with resolutions of approximately 20 nm and 0.2′′, respectively. The surface encoder is placed inside the stage so that the stage system is very compact in size. Experimental results indicate that precision positioning can be carried out independently in X , Y and θ Z with resolutions of 200 nm and 1′′, respectively.

146 citations

Journal ArticleDOI
TL;DR: In this article, single-point diamond turning was used to perform a ductile material removal operation via single-crystal silicon carbide (6H) single point diamond turning.
Abstract: We have demonstrated the ability to perform a ductile material removal operation, via single-point diamond turning, on single-crystal silicon carbide (6H). To our knowledge, this is the first reported work on the ductile machining of single-crystal silicon carbide (SiC). SiC experiences a ductile-to-brittle transition similar to other nominally brittle materials such as silicon, germanium, and silicon nitride. It is believed that the ductility of SiC during machining is due to the formation of a high-pressure phase at the cutting edge, which encompasses the chip formation zone and its associated material volume. This high-pressure phase transformation mechanism is similar to that found with other semiconductors and ceramics, leading to a plastic response rather than brittle fracture at small size scales.

142 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of nanopositioning technologies and devices emphasizing the key role of advanced control techniques in improving precision, accuracy, and speed of operation of these systems.
Abstract: Nanotechnology is the science of understanding matter and the control of matter at dimensions of 100 nm or less. Encompassing nanoscale science, engineering, and technology, nanotechnology involves imaging, measuring, modeling, and manipulation of matter at this level of precision. An important aspect of research in nanotechnology involves precision control and manipulation of devices and materials at a nanoscale, i.e., nanopositioning. Nanopositioners are precision mechatronic systems designed to move objects over a small range with a resolution down to a fraction of an atomic diameter. The desired attributes of a nanopositioner are extremely high resolution, accuracy, stability, and fast response. The key to successful nanopositioning is accurate position sensing and feedback control of the motion. This paper presents an overview of nanopositioning technologies and devices emphasizing the key role of advanced control techniques in improving precision, accuracy, and speed of operation of these systems.

1,027 citations

Book ChapterDOI
27 Jan 2010

878 citations

Journal ArticleDOI
01 Sep 2008
TL;DR: This paper presents the state of the art in automatic signature verification and addresses the most valuable results obtained so far and highlights the most profitable directions of research to date.
Abstract: In recent years, along with the extraordinary diffusion of the Internet and a growing need for personal verification in many daily applications, automatic signature verification is being considered with renewed interest. This paper presents the state of the art in automatic signature verification. It addresses the most valuable results obtained so far and highlights the most profitable directions of research to date. It includes a comprehensive bibliography of more than 300 selected references as an aid for researchers working in the field.

688 citations