scispace - formally typeset
Search or ask a question
Author

Wei Li

Other affiliations: Jilin University
Bio: Wei Li is an academic researcher from Hunan Agricultural University. The author has contributed to research in topics: Perovskite (structure) & Materials science. The author has an hindex of 19, co-authored 61 publications receiving 1607 citations. Previous affiliations of Wei Li include Jilin University.


Papers
More filters
Journal ArticleDOI
Hao Zhang1, Liping Wang1, Huan-Ming Xiong1, Lianghai Hu1, Bai Yang, Wei Li1 

394 citations

Journal ArticleDOI
TL;DR: A combination of bulk electrosensitive measurements, density functional theory calculations, and atomic force microscopy technology with quantitative nanomechanical mapping is used to show that grain boundaries in polycrystalline wires are more active and mechanically stable than single-crystaline wires for real-time detection of chemical analytes.
Abstract: The development of materials with high efficiency and stable signal output in a bent state is important for flexible electronics. Grain boundaries provide lasting inspiration and a promising avenue for designing advanced functionalities using nanomaterials. Combining bulk defects in polycrystalline materials is shown to result in rich new electronic structures, catalytic activities, and mechanical properties for many applications. However, direct evidence that grain boundaries can create new physicochemical properties in flexible electronics is lacking. Here, a combination of bulk electrosensitive measurements, density functional theory calculations, and atomic force microscopy technology with quantitative nanomechanical mapping is used to show that grain boundaries in polycrystalline wires are more active and mechanically stable than single-crystalline wires for real-time detection of chemical analytes. The existence of a grain boundary improves the electronic and mechanical properties, which activate and stabilize materials, and allow new opportunities to design highly sensitive, flexible chemical sensors.

136 citations

Journal ArticleDOI
TL;DR: The study demonstrates that iodine anion vacancy can be beneficial to the performance, because it causes minor changes to the charge carrier lifetime, while increasing charge carrier concentration, however, the neutral iodine and iodine cation vacancies should be strongly avoided.
Abstract: Advances in perovskite solar cells require development of means to control and eliminate the nonradiative charge recombination pathway. Using ab initio nonadiabatic molecular dynamics, we demonstra...

110 citations

Journal ArticleDOI
TL;DR: It is shown that treatment with inhibitors of lysosomal proteases largely blocked cytosolic ferritin loss in both MtFt-expressing and wild-type cells, and that both lysOSomal and proteasomal pathways may be involved in cytosol ferritIn degradation.
Abstract: Cytosolic ferritins sequester and store iron, consequently protecting cells against iron-mediated free radical damage. However, the mechanisms of iron exit from the ferritin cage and reutilization are largely unknown. In a previous study, we found that mitochondrial ferritin (MtFt) expression led to a decrease in cytosolic ferritin. Here we showed that treatment with inhibitors of lysosomal proteases largely blocked cytosolic ferritin loss in both MtFt-expressing and wild-type cells. Moreover, cytosolic ferritin in cells treated with inhibitors of lysosomal proteases was found to store more iron than did cytosolic ferritins in untreated cells. The prevention of cytosolic ferritin degradation in MtFt-expressing cells significantly blocked iron mobilization from the protein cage induced by MtFt expression. These studies also showed that blockage of cytosolic ferritin loss by leupeptin resulted in decreased cytosolic ferritin synthesis and prolonged cytosolic ferritin stability, potentially resultin...

104 citations

Journal ArticleDOI
TL;DR: In this paper, the role of spin-orbit coupling in nonradiative relaxation of hot electrons and holes in methylammonium lead perovskite, MAPbI3, was studied.
Abstract: In this work, we study the role of spin–orbit coupling (SOC) in nonradiative relaxation of hot electrons and holes in methylammonium lead perovskite, MAPbI3. For this purpose, we have developed the nonadiabatic molecular dynamics method with two-component spinor wave functions that are solutions of the relativistic Kohn–Sham (KS) equations. We find that SOC enhances contributions of Pb(px) and Pb(py) orbitals to the conduction and valence bands. As a result, the KS orbitals become more sensitive to nuclear motions, leading to the increased nonadiabatic couplings. Consequently, SOC greatly speeds up the electron and hole relaxation, making the computed relaxation time scales consistent with available experiments. We suggest that the fast hot carrier relaxation facilitated by the SOC allows rapid transition into the long-lived triplet state that extends charge-carrier lifetime and helps achieve high-efficiency perovskite solar cells.

95 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovSKite solar cells, and possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.
Abstract: With rapid progress in a power conversion efficiency (PCE) to reach 25%, metal halide perovskite-based solar cells became a game-changer in a photovoltaic performance race. Triggered by the development of the solid-state perovskite solar cell in 2012, intense follow-up research works on structure design, materials chemistry, process engineering, and device physics have contributed to the revolutionary evolution of the solid-state perovskite solar cell to be a strong candidate for a next-generation solar energy harvester. The high efficiency in combination with the low cost of materials and processes are the selling points of this cell over commercial silicon or other organic and inorganic solar cells. The characteristic features of perovskite materials may enable further advancement of the PCE beyond those afforded by the silicon solar cells, toward the Shockley-Queisser limit. This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovskite solar cells. Furthermore, possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.

1,116 citations

Journal ArticleDOI
TL;DR: A comprehensive review of superparamagnetic colloid research can be found in this article, with a focus on those systems that can be prepared as monodisperse samples and in relatively large quantities.
Abstract: The aim of this article is to provide a comprehensive review of current research activities that center on superparamagnetic colloids. We begin with an overview of synthetic strategies that have been developed for generating both nanoscale and mesoscale superparamagnetic colloids, with a focus on those systems that can be prepared as monodisperse samples and in relatively large quantities. We then discuss a variety of techniques that have been exploited for modifying surface properties, as well as for controlling the assembly and patterning of these magnetically active colloids. Towards the end, we highlight a range of innovative applications enabled by the unique combination of superparamagnetism and colloidal suspension. We conclude this review article with personal remarks and perspectives on the directions toward which future research in this area might be directed.

880 citations

Journal ArticleDOI
TL;DR: The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance.
Abstract: Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron–sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance.

876 citations