scispace - formally typeset
Search or ask a question
Author

Wei Lu

Bio: Wei Lu is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Breast cancer. The author has an hindex of 111, co-authored 1973 publications receiving 61911 citations. Previous affiliations of Wei Lu include Peking University & Southern University of Science and Technology.


Papers
More filters
Proceedings ArticleDOI
08 Jul 2009
TL;DR: A new data set is proposed, NSL-KDD, which consists of selected records of the complete KDD data set and does not suffer from any of mentioned shortcomings.
Abstract: During the last decade, anomaly detection has attracted the attention of many researchers to overcome the weakness of signature-based IDSs in detecting novel attacks, and KDDCUP'99 is the mostly widely used data set for the evaluation of these systems. Having conducted a statistical analysis on this data set, we found two important issues which highly affects the performance of evaluated systems, and results in a very poor evaluation of anomaly detection approaches. To solve these issues, we have proposed a new data set, NSL-KDD, which consists of selected records of the complete KDD data set and does not suffer from any of mentioned shortcomings.

3,300 citations

Proceedings ArticleDOI
17 Oct 2015
TL;DR: A novel model for learning vertex representations of weighted graphs that integrates global structural information of the graph into the learning process and significantly outperforms other state-of-the-art methods in such tasks.
Abstract: In this paper, we present {GraRep}, a novel model for learning vertex representations of weighted graphs. This model learns low dimensional vectors to represent vertices appearing in a graph and, unlike existing work, integrates global structural information of the graph into the learning process. We also formally analyze the connections between our work and several previous research efforts, including the DeepWalk model of Perozzi et al. as well as the skip-gram model with negative sampling of Mikolov et al. We conduct experiments on a language network, a social network as well as a citation network and show that our learned global representations can be effectively used as features in tasks such as clustering, classification and visualization. Empirical results demonstrate that our representation significantly outperforms other state-of-the-art methods in such tasks.

1,565 citations

Journal ArticleDOI
TL;DR: A meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, and identified 29,807 SNPs for further genotyping suggests that more than 1,000 additional loci are involved in breast cancer susceptibility.
Abstract: Breast cancer is the most common cancer among women Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC) The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborative Oncological Gene-environment Study, COGS) and used a custom Illumina iSelect genotyping array, iCOGS, comprising more than 200,000 SNPs We identified SNPs at 41 new breast cancer susceptibility loci at genome-wide significance (P < 5 × 10(-8)) Further analyses suggest that more than 1,000 additional loci are involved in breast cancer susceptibility

1,048 citations

Journal ArticleDOI
Anubha Mahajan1, Min Jin Go, Weihua Zhang2, Jennifer E. Below3  +392 moreInstitutions (104)
TL;DR: In this paper, the authors aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry.
Abstract: To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.

954 citations

Proceedings Article
12 Feb 2016
TL;DR: A novel model for learning graph representations, which generates a low-dimensional vector representation for each vertex by capturing the graph structural information directly, and which outperforms other stat-of-the-art models in such tasks.
Abstract: In this paper, we propose a novel model for learning graph representations, which generates a low-dimensional vector representation for each vertex by capturing the graph structural information. Different from other previous research efforts, we adopt a random surfing model to capture graph structural information directly, instead of using the sampling-based method for generating linear sequences proposed by Perozzi et al. (2014). The advantages of our approach will be illustrated from both theorical and empirical perspectives. We also give a new perspective for the matrix factorization method proposed by Levy and Goldberg (2014), in which the pointwise mutual information (PMI) matrix is considered as an analytical solution to the objective function of the skip-gram model with negative sampling proposed by Mikolov et al. (2013). Unlike their approach which involves the use of the SVD for finding the low-dimensitonal projections from the PMI matrix, however, the stacked denoising autoencoder is introduced in our model to extract complex features and model non-linearities. To demonstrate the effectiveness of our model, we conduct experiments on clustering and visualization tasks, employing the learned vertex representations as features. Empirical results on datasets of varying sizes show that our model outperforms other stat-of-the-art models in such tasks.

919 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations