Author
Wei Luo
Other affiliations: Nanjing University of Science and Technology
Bio: Wei Luo is an academic researcher from South China Agricultural University. The author has contributed to research in topics: Contextual image classification & Feature learning. The author has an hindex of 8, co-authored 24 publications receiving 297 citations. Previous affiliations of Wei Luo include Nanjing University of Science and Technology.
Papers
More filters
01 Oct 2019
TL;DR: Cross-X learning as mentioned in this paper exploits the relationships between different images and between different network layers for robust multi-scale feature learning, which can be easily trained end-to-end and is scalable to large datasets like NABirds.
Abstract: Recognizing objects from subcategories with very subtle differences remains a challenging task due to the large intra-class and small inter-class variation. Recent work tackles this problem in a weakly-supervised manner: object parts are first detected and the corresponding part-specific features are extracted for fine-grained classification. However, these methods typically treat the part-specific features of each image in isolation while neglecting their relationships between different images. In this paper, we propose Cross-X learning, a simple yet effective approach that exploits the relationships between different images and between different network layers for robust multi-scale feature learning. Our approach involves two novel components: (i) a cross-category cross-semantic regularizer that guides the extracted features to represent semantic parts and, (ii) a cross-layer regularizer that improves the robustness of multi-scale features by matching the prediction distribution across multiple layers. Our approach can be easily trained end-to-end and is scalable to large datasets like NABirds. We empirically analyze the contributions of different components of our approach and demonstrate its robustness, effectiveness and state-of-the-art performance on five benchmark datasets. Code is available at \url{https://github.com/cswluo/CrossX}.
166 citations
TL;DR: A convolutional sparse auto-encoder (CSAE), which leverages the structure of the Convolutional AE and incorporates the max-pooling to heuristically sparsify the feature maps for feature learning and makes the stochastic gradient descent algorithm work efficiently for the CSAE training.
Abstract: Convolutional sparse coding (CSC) can model local connections between image content and reduce the code redundancy when compared with patch-based sparse coding. However, CSC needs a complicated optimization procedure to infer the codes (i.e., feature maps). In this brief, we proposed a convolutional sparse auto-encoder (CSAE), which leverages the structure of the convolutional AE and incorporates the max-pooling to heuristically sparsify the feature maps for feature learning. Together with competition over feature channels, this simple sparsifying strategy makes the stochastic gradient descent algorithm work efficiently for the CSAE training; thus, no complicated optimization procedure is involved. We employed the features learned in the CSAE to initialize convolutional neural networks for classification and achieved competitive results on benchmark data sets. In addition, by building connections between the CSAE and CSC, we proposed a strategy to construct local descriptors from the CSAE for classification. Experiments on Caltech-101 and Caltech-256 clearly demonstrated the effectiveness of the proposed method and verified the CSAE as a CSC model has the ability to explore connections between neighboring image content for classification tasks.
114 citations
TL;DR: The experimental results demonstrate that when the sufficient conditions are satisfied, the pretraining models lead to sparseness, and the experimental results show that the performance of RePLU is better than ReLU, and is comparable with those with some pretraining techniques, such as RBMs and DAEs.
Abstract: A major progress in deep multilayer neural networks (DNNs) is the invention of various unsupervised pretraining methods to initialize network parameters which lead to good prediction accuracy. This paper presents the sparseness analysis on the hidden unit in the pretraining process. In particular, we use the $L_{1}$ -norm to measure sparseness and provide some sufficient conditions for that pretraining leads to sparseness with respect to the popular pretraining models—such as denoising autoencoders (DAEs) and restricted Boltzmann machines (RBMs). Our experimental results demonstrate that when the sufficient conditions are satisfied, the pretraining models lead to sparseness. Our experiments also reveal that when using the sigmoid activation functions, pretraining plays an important sparseness role in DNNs with sigmoid (Dsigm), and when using the rectifier linear unit (ReLU) activation functions, pretraining becomes less effective for DNNs with ReLU (Drelu). Luckily, Drelu can reach a higher recognition accuracy than DNNs with pretraining (DAEs and RBMs), as it can capture the main benefit (such as sparseness-encouraging) of pretraining in Dsigm. However, ReLU is not adapted to the different firing rates in biological neurons, because the firing rate actually changes along with the varying membrane resistances. To address this problem, we further propose a family of rectifier piecewise linear units (RePLUs) to fit the different firing rates. The experimental results show that the performance of RePLU is better than ReLU, and is comparable with those with some pretraining techniques, such as RBMs and DAEs.
65 citations
TL;DR: The approach learns fine-grained features by enhancing the semantics of sub-features of a global feature by arranging feature channels of a CNN into different groups through channel permutation.
Abstract: We aim to provide a computationally cheap yet effective approach for fine-grained image classification (FGIC) in this letter. Unlike previous methods that rely on complex part localization modules, our approach learns fine-grained features by enhancing the semantics of sub-features of a global feature. Specifically, we first achieve the sub-feature semantic by arranging feature channels of a CNN into different groups through channel permutation. Meanwhile, to enhance the discriminability of sub-features, the groups are guided to be activated on object parts with strong discriminability by a weighted combination regularization. Our approach is parameter parsimonious and can be easily integrated into the backbone model as a plug-and-play module for end-to-end training with only image-level supervision. Experiments verified the effectiveness of our approach and validated its comparable performance to the state-of-the-art methods. Code is available at https://github.com/cswluo/SEF .
34 citations
TL;DR: The concept of locality is introduced into the auto-encoder, which enables theAutoencoder to encode similar inputs using similar features to classify images.
Abstract: We propose a locality-constrained sparse auto-encoder (LSAE) for image classification in this letter. Previous work has shown that the locality is more essential than sparsity for classification task. We here introduce the concept of locality into the auto-encoder, which enables the auto-encoder to encode similar inputs using similar features. The proposed LSAE can be trained by the existing backprop algorithm; no complicated optimization is involved. Experiments on the CIFAR-10, STL-10 and Caltech-101 datasets validate the effectiveness of LSAE for classification task.
20 citations
Cited by
More filters
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.
10,141 citations
TL;DR: The proposed model defeats the state-of-the-art deep learning approaches applied to place recognition and is easily trained via the standard backpropagation method.
Abstract: We propose an end-to-end place recognition model based on a novel deep neural network. First, we propose to exploit the spatial pyramid structure of the images to enhance the vector of locally aggregated descriptors (VLAD) such that the enhanced VLAD features can reflect the structural information of the images. To encode this feature extraction into the deep learning method, we build a spatial pyramid-enhanced VLAD (SPE-VLAD) layer. Next, we impose weight constraints on the terms of the traditional triplet loss (T-loss) function such that the weighted T-loss (WT-loss) function avoids the suboptimal convergence of the learning process. The loss function can work well under weakly supervised scenarios in that it determines the semantically positive and negative samples of each query through not only the GPS tags but also the Euclidean distance between the image representations. The SPE-VLAD layer and the WT-loss layer are integrated with the VGG-16 network or ResNet-18 network to form a novel end-to-end deep neural network that can be easily trained via the standard backpropagation method. We conduct experiments on three benchmark data sets, and the results demonstrate that the proposed model defeats the state-of-the-art deep learning approaches applied to place recognition.
281 citations
01 Jan 2013
TL;DR: In this article, a fast convolutional sparse coding algorithm with globally optimal sub problems and super-linear convergence is proposed for sparse coding with signal processing and augmented Lagrange methods.
Abstract: Sparse coding has become an increasingly popular method in learning and vision for a variety of classification, reconstruction and coding tasks. The canonical approach intrinsically assumes independence between observations during learning. For many natural signals however, sparse coding is applied to sub-elements ( i.e. patches) of the signal, where such an assumption is invalid. Convolutional sparse coding explicitly models local interactions through the convolution operator, however the resulting optimization problem is considerably more complex than traditional sparse coding. In this paper, we draw upon ideas from signal processing and Augmented Lagrange Methods (ALMs) to produce a fast algorithm with globally optimal sub problems and super-linear convergence.
271 citations
TL;DR: A snapshot of the fast-growing deep learning field for microscopy image analysis, which explains the architectures and the principles of convolutional neural networks, fully Convolutional networks, recurrent neural Networks, stacked autoencoders, and deep belief networks and their formulations or modelings for specific tasks on various microscopy images.
Abstract: Computerized microscopy image analysis plays an important role in computer aided diagnosis and prognosis. Machine learning techniques have powered many aspects of medical investigation and clinical practice. Recently, deep learning is emerging as a leading machine learning tool in computer vision and has attracted considerable attention in biomedical image analysis. In this paper, we provide a snapshot of this fast-growing field, specifically for microscopy image analysis. We briefly introduce the popular deep neural networks and summarize current deep learning achievements in various tasks, such as detection, segmentation, and classification in microscopy image analysis. In particular, we explain the architectures and the principles of convolutional neural networks, fully convolutional networks, recurrent neural networks, stacked autoencoders, and deep belief networks, and interpret their formulations or modelings for specific tasks on various microscopy images. In addition, we discuss the open challenges and the potential trends of future research in microscopy image analysis using deep learning.
235 citations
Posted Content•
TL;DR: Deep Ensemble Learning (DEL) as mentioned in this paper combines several individual models to obtain better generalization performance by combining the advantages of both the deep learning models as well as the ensemble learning.
Abstract: Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions.
153 citations