scispace - formally typeset
Search or ask a question
Author

Wei-Min Qu

Bio: Wei-Min Qu is an academic researcher from Fudan University. The author has contributed to research in topics: Non-rapid eye movement sleep & Wakefulness. The author has an hindex of 32, co-authored 100 publications receiving 4221 citations. Previous affiliations of Wei-Min Qu include Ehime University & Osaka Bioscience Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that caffeine at 5, 10 and 15 mg kg−1 increased wakefulness in both wild-type mice and A1 receptor knockout mice, but not in A2A receptor knockout mouse, indicating that caffeine-induced wakefulness depends on adenosine A2a receptors.
Abstract: Caffeine, a component of tea, coffee and cola, induces wakefulness. It binds to adenosine A1 and A2A receptors as an antagonist, but the receptor subtype mediating caffeine-induced wakefulness remains unclear. Here we report that caffeine at 5, 10 and 15 mg kg(-1) increased wakefulness in both wild-type mice and A1 receptor knockout mice, but not in A2A receptor knockout mice. Thus, caffeine-induced wakefulness depends on adenosine A2A receptors.

574 citations

Journal ArticleDOI
TL;DR: Findings strongly indicate that the arousal effect of orexin A depends on the activation of histaminergic neurotransmission mediated by H1R.
Abstract: Orexin neurons are exclusively localized in the lateral hypothalamic area and project their fibers to the entire central nervous system, including the histaminergic tuberomammillary nucleus (TMN). Dysfunction of the orexin system results in the sleep disorder narcolepsy, but the role of orexin in physiological sleep-wake regulation and the mechanisms involved remain to be elucidated. Here we provide several lines of evidence that orexin A induces wakefulness by means of the TMN and histamine H(1) receptor (H1R). Perfusion of orexin A (5 and 25 pmol/min) for 1 hr into the TMN of rats through a microdialysis probe promptly increased wakefulness for 2 hr after starting the perfusion by 2.5- and 4-fold, respectively, concomitant with a reduction in rapid eye movement (REM) and non-REM sleep. Microdialysis studies showed that application of orexin A to the TMN increased histamine release from both the medial preoptic area and the frontal cortex by approximately 2-fold over the baseline for 80 to 160 min in a dose-dependent manner. Furthermore, infusion of orexin A (1.5 pmol/min) for 6 hr into the lateral ventricle of mice produced a significant increase in wakefulness during the 8 hr after starting infusion to the same level as the wakefulness observed during the active period in wild-type mice, but not at all in H1R gene knockout mice. These findings strongly indicate that the arousal effect of orexin A depends on the activation of histaminergic neurotransmission mediated by H1R.

526 citations

Journal ArticleDOI
TL;DR: It is reported that the A2ARs in the shell region of the nucleus accumbens (NAc) are responsible for the effect of caffeine on wakefulness and that caffeine promotes arousal by activating pathways that traditionally have been associated with motivational and motor responses in the brain.
Abstract: Caffeine, the most widely used psychoactive compound, is an adenosine receptor antagonist. It promotes wakefulness by blocking adenosine A(2A) receptors (A(2A)Rs) in the brain, but the specific neurons on which caffeine acts to produce arousal have not been identified. Using selective gene deletion strategies based on the Cre/loxP technology in mice and focal RNA interference to silence the expression of A(2A)Rs in rats by local infection with adeno-associated virus carrying short-hairpin RNA, we report that the A(2A)Rs in the shell region of the nucleus accumbens (NAc) are responsible for the effect of caffeine on wakefulness. Caffeine-induced arousal was not affected in rats when A(2A)Rs were focally removed from the NAc core or other A(2A)R-positive areas of the basal ganglia. Our observations suggest that caffeine promotes arousal by activating pathways that traditionally have been associated with motivational and motor responses in the brain.

255 citations

Journal ArticleDOI
TL;DR: Findings strongly indicate that dopaminergic D1R and D2R are essential for the wakefulness induced by modafinil.
Abstract: Modafinil is a wake-promoting compound with low abuse potential used in the treatment of narcolepsy. Although the compound is reported to affect multiple neurotransmitter systems such as catecholamines, serotonin, glutamate, GABA, orexin, and histamine, however, the molecular mechanism by which modafinil increases wakefulness is debated. Herein we used dopamine (DA) D2 receptor (D2R)-deficient mice combined with D1R- and D2R-specific antagonists to clarify the role of DA receptors in the arousal effects of modafinil. In wild-type mice, intraperitoneal modafinil induced wakefulness in a dose-dependent manner. Pretreatment with either D1R antagonist SCH23390 [R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine] at 30 μg/kg or D2R antagonist raclopride at 2 mg/kg blocked the arousal effects of low-dose modafinil at 22.5 and 45 mg/kg. When modafinil was given at 90 and 180 mg/kg, pretreatment of D1R antagonist did not affect the wakefulness at all, whereas D2R antagonist significantly attenuated the wakefulness to the half level compared with vehicle control. Similarly, D2R knock-out (KO) mice exhibited attenuated modafinil-induced wakefulness. However, pretreatment of D2R KO mice with D1R antagonist completely abolished arousal effects of modafinil. These findings strongly indicate that dopaminergic D1R and D2R are essential for the wakefulness induced by modafinil.

217 citations

Journal ArticleDOI
TL;DR: Results indicate that DPs in the arachnoid trabecular cells of the basal forebrain mediate an increase in the extracellular adenosine level and sleep induction by PGD2.
Abstract: Infusion of prostaglandin (PG) D(2) into the lateral ventricle of the brain induced an increase in the amount of non-rapid eye movement sleep in wild-type (WT) mice but not in mice deficient in the PGD receptor (DP). Immunofluorescence staining of WT mouse brain revealed that DP immunoreactivity was dominantly localized in the leptomeninges (LM) of the basal forebrain but that PGD synthase immunoreactivity was widely distributed in the LM of the entire brain. Electron microscopic observation indicated that DP-immunoreactive particles were predominantly located on the plasma membranes of arachnoid trabecular cells of the LM. The region with the highest DP immunoreactivity was clearly defined as bilateral wings in the LM of the basal forebrain located lateral to the optic chiasm in the proximity of the ventrolateral preoptic area, one of the putative sleep centers, and the tuberomammillary nucleus, one of the putative wake centers. The LM of this region contained DP mRNA 70-fold higher than that in the cortex as judged from the results of quantitative reverse transcription-PCR. PGD(2) infusion into the subarachnoid space of this region increased the extracellular adenosine level more than 2-fold in WT mice but not in the DP-deficient mice. These results indicate that DPs in the arachnoid trabecular cells of the basal forebrain mediate an increase in the extracellular adenosine level and sleep induction by PGD(2).

180 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review aims to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings.
Abstract: Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.

1,964 citations

Journal ArticleDOI
TL;DR: Recent advances in the understanding of the roles of the various adenosine receptor subtypes, and in the development of selective and potent ligands, have brought the goal of therapeutic application of adenosines receptor modulators considerably closer.
Abstract: Adenosine receptors are major targets of caffeine, the most commonly consumed drug in the world There is growing evidence that they could also be promising therapeutic targets in a wide range of conditions, including cerebral and cardiac ischaemic diseases, sleep disorders, immune and inflammatory disorders and cancer After more than three decades of medicinal chemistry research, a considerable number of selective agonists and antagonists of adenosine receptors have been discovered, and some have been clinically evaluated, although none has yet received regulatory approval However, recent advances in the understanding of the roles of the various adenosine receptor subtypes, and in the development of selective and potent ligands, as discussed in this review, have brought the goal of therapeutic application of adenosine receptor modulators considerably closer

1,303 citations

Journal ArticleDOI
13 Nov 2009-Science
TL;DR: It is found that brain interstitial fluid levels of Aβ were significantly correlated with wakefulness and negatively correlated with sleep, and chronic sleep restriction significantly increased, and a dual orexin receptor antagonist decreased, Aβ plaque formation in amyloid precursor protein transgenic mice.
Abstract: Amyloid-beta (Abeta) accumulation in the brain extracellular space is a hallmark of Alzheimer's disease. The factors regulating this process are only partly understood. Abeta aggregation is a concentration-dependent process that is likely responsive to changes in brain interstitial fluid (ISF) levels of Abeta. Using in vivo microdialysis in mice, we found that the amount of ISF Abeta correlated with wakefulness. The amount of ISF Abeta also significantly increased during acute sleep deprivation and during orexin infusion, but decreased with infusion of a dual orexin receptor antagonist. Chronic sleep restriction significantly increased, and a dual orexin receptor antagonist decreased, Abeta plaque formation in amyloid precursor protein transgenic mice. Thus, the sleep-wake cycle and orexin may play a role in the pathogenesis of Alzheimer's disease.

1,205 citations

Journal ArticleDOI
TL;DR: In the 10 years since the previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors, no developments have led to major changes in the recommendations, but there have been so many other developments that an update is needed.
Abstract: In the 10 years since our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors, no developments have led to major changes in the recommendations. However, there have been so many other developments that an update is needed. The fact that the structure of one of the adenosine receptors has recently been solved has already led to new ways of in silico screening of ligands. The evidence that adenosine receptors can form homo- and heteromultimers has accumulated, but the functional significance of such complexes remains unclear. The availability of mice with genetic modification of all the adenosine receptors has led to a clarification of the functional roles of adenosine, and to excellent means to study the specificity of drugs. There are also interesting associations between disease and structural variants in one or more of the adenosine receptors. Several new selective agonists and antagonists have become available. They provide improved possibilities for receptor classification. There are also developments hinting at the usefulness of allosteric modulators. Many drugs targeting adenosine receptors are in clinical trials, but the established therapeutic use is still very limited.

1,145 citations

Journal ArticleDOI
22 Dec 2010-Neuron
TL;DR: The basic circuitry underlying the regulation of sleep and wakefulness is examined and a theoretical framework wherein the interactions between reciprocal neuronal circuits enable relatively rapid and complete state transitions is discussed.

1,107 citations