scispace - formally typeset
Search or ask a question
Author

Wei-Ming Li

Bio: Wei-Ming Li is an academic researcher from Nanjing University. The author has contributed to research in topics: Atomic layer deposition & Visible spectrum. The author has an hindex of 3, co-authored 3 publications receiving 55 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Results demonstrate that ALD surface modification with ultrathin coating is an extremely powerful route for the applications in constructing efficient and stable photocatalysts.
Abstract: In this work, commercial anatase TiO2 powders were modified using ultrathin Fe2O3 layer by atomic layer deposition (ALD). The ultrathin Fe2O3 coating having small bandgap of 2.20 eV can increase the visible light absorption of TiO2 supports, at the meantime, Fe2O3/TiO2 heterojunction can effectively improve the lifetime of photogenerated electron–hole pairs. Results of ALD Fe2O3 modified TiO2 catalyst, therefore, showed great visible light driven catalytic degradation of methyl orange compared to pristine TiO2. A 400 cycles of ALD Fe2O3 (~ 2.6 nm) coated TiO2 powders exhibit the highest degradation efficiency of 97.4% in 90 min, much higher than pristine TiO2 powders of only 12.5%. Moreover, an ultrathin ALD Al2O3 (~ 2 nm) was able to improve the stability of Fe2O3-TiO2 catalyst. These results demonstrate that ALD surface modification with ultrathin coating is an extremely powerful route for the applications in constructing efficient and stable photocatalysts.

59 citations

Journal ArticleDOI
Min Li1, Zhi-Xian Jin1, Wei Zhang1, Yuhang Bai1, Yan-Qiang Cao1, Wei-Ming Li1, Di Wu1, Aidong Li1 
TL;DR: Among these metal oxides, TALD/PEALD HfO2 ultrathin films exhibit the best chemical stability and anti-corrosion property without any change in thickness after long time immersion into acidic, alkaline and neutral solutions.
Abstract: The wide applications of ultrathin group IV metal oxide films (TiO2, ZrO2 and HfO2) probably expose materials to potentially reactive etchants and solvents, appealing for extraordinary chemical stability and corrosion resistance property. In this paper, TiO2 ultrathin films were deposited on Si at 200 °C while ZrO2 and HfO2 were grown at 250 °C to fit their growth temperature window, by thermal atomic layer deposition (TALD) and plasma-enhanced ALD (PEALD). A variety of chemical liquid media including 1 mol/L H2SO4, 1 mol/L HCl, 1 mol/L KOH, 1 mol/L KCl, and 18 MΩ deionized water were used to test and compare chemical stability of all these as-deposited group IV metal oxides thin films, as well as post-annealed samples at various temperatures. Among these metal oxides, TALD/PEALD HfO2 ultrathin films exhibit the best chemical stability and anti-corrosion property without any change in thickness after long time immersion into acidic, alkaline and neutral solutions. As-deposited TALD ZrO2 ultrathin films have slow etch rate of 1.06 nm/day in 1 mol/L HCl, however other PEALD ZrO2 ultrathin films and annealed TALD ones show better anti-acid stability, indicating the role of introduction of plasma O2 in PEALD and post-thermal treatment. As-deposited TiO2 ultrathin films by TALD and PEALD are found to be etched slowly in acidic solutions, but the PEALD can decrease the etching rate of TiO2 by ~41%. After post-annealing, TiO2 ultrathin films have satisfactory corrosion resistance, which is ascribed to the crystallization transition from amorphous to anatase phase and the formation of 5% Si-doped TiO2 ultrathin layers on sample surfaces, i.e. Ti-silicate. ZrO2, and TiO2 ultrathin films show excellent corrosion endurance property in basic and neutral solutions. Simultaneously, 304 stainless steel coated with PEALD-HfO2 is found to have a lower corrosion rate than that with TALD-HfO2 by means of electrochemical measurement. The pre-treatment of plasma H2 to 304 stainless steel can effectively reduce interfacial impurities and porosity of overlayers with significantly enhanced corrosion endurance. Above all, the chemical stability and anti-corrosion properties of IV group metal oxide coatings can be improved by using PEALD technique, post-annealing process and plasma H2 pre-treatment to substrates.

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Different types of energy-saving chemisresitive gas sensors and their application in the fields of environmental monitoring are discussed.

204 citations

Book ChapterDOI
Y. Chéron1
01 Jan 1992
TL;DR: This chapter will focus on the design of the non-reversible series resonant converter.
Abstract: After the introduction and justification of several more or less well known and complicated conversion topologies based on series resonance, this chapter will focus on the design of the non-reversible series resonant converter. Following this, a brief description will be given concerning a collection of DC/DC and DC/AC converters developed under various industrial contracts by the Laboratoire d’Electrotechnique et d’Electronique Industrielle (L.E.E.L), Toulouse, France.

157 citations

Journal ArticleDOI
23 Nov 2020-Sensors
TL;DR: Graphene, transition metal chalcogenides, boron nitride, Transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing.
Abstract: This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies.

115 citations

Journal ArticleDOI
TL;DR: It is shown that, along with the advantages of these materials, there are a number of disadvantages that significantly limit their use in the development of devices designed for the sensor market.
Abstract: This article discusses the main uses of 1D and 2D nanomaterials in the development of conductometric gas sensors based on metal oxides. It is shown that, along with the advantages of these materials, which can improve the parameters of gas sensors, there are a number of disadvantages that significantly limit their use in the development of devices designed for the sensor market.

70 citations

Journal ArticleDOI
08 Sep 2020-Sensors
TL;DR: The discussion related to the development of the sensitivity of metal oxide semiconductors, especially ZnO, by the synthesis method or by obtaining new materials, is suitable and necessary to have an overview of the latest results in this domain.
Abstract: Surface acoustic wave (SAW) gas sensors are of continuous development interest to researchers due to their sensitivity, short detection time, and reliability. Among the most used materials to achieve the sensitive film of SAW sensors are metal oxide semiconductors, which are highlighted by thermal and chemical stability, by the presence on their surface of free electrons and also by the possibility of being used in different morphologies. For different types of gases, certain metal oxide semiconductors are used, and ZnO is an important representative for this category of materials in the field of sensors. Having a great potential for the development of SAW sensors, the discussion related to the development of the sensitivity of metal oxide semiconductors, especially ZnO, by the synthesis method or by obtaining new materials, is suitable and necessary to have an overview of the latest results in this domain.

34 citations