scispace - formally typeset
Search or ask a question
Author

Wei Wang

Bio: Wei Wang is an academic researcher from Wuhan University. The author has contributed to research in topics: Zinc finger & Hydrogen bond. The author has an hindex of 22, co-authored 63 publications receiving 2920 citations. Previous affiliations of Wei Wang include Southern Illinois University Carbondale & University of Pittsburgh.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a new approach to drug design called “combinatorial biosynthesis and drug discovery through nanofiltration”, which combines the efforts of a single investigator with those of a number of other scientists.
Abstract: Multicomponent reactions (MCRs) are one-pot reactions employing more than two starting materials, e.g. 3, 4, … 7, where most of the atoms of the starting materials are incorporated in the final product.1 Several descriptive tags are regularly attached to MCRs (Fig. 1): they are atom economic, e.g. the majority if not all of the atoms of the starting materials are incorporated in the product; they are efficient, e.g. they efficiently yield the product since the product is formed in one-step instead of multiple sequential steps; they are convergent, e.g. several starting materials combine in one reaction to form the product; they exhibit a very high bond-forming-index (BFI), e.g. several non-hydrogen atom bonds are formed in one synthetic transformation.2 Therefore MCRs are often a useful alternative to sequential multistep synthesis. Open in a separate window Figure 1 Above: multistep syntheses can be divergent (sequential) or convergent; below: in analogy MCR reactions are convergent and one or two component reactions are divergent or less convergent.

1,840 citations

Journal ArticleDOI
TL;DR: The structures indicate how the substituents of a small molecule that bind to the three subpockets of theMDM2/X-p53 interaction should be optimized for effective binding to MDM2 and/or MDMX.
Abstract: Intensive anticancer drug discovery efforts have been made to develop small molecule inhibitors of the p53-MDM2 and p53-MDMX interactions. We present here the structures of the most potent inhibitors bound to MDM2 and MDMX that are based on the new imidazo-indole scaffold. In addition, the structure of the recently reported spiro-oxindole inhibitor bound to MDM2 is described. The structures indicate how the substituents of a small molecule that bind to the three subpockets of the MDM2/X-p53 interaction should be optimized for effective binding to MDM2 and/or MDMX. While the spiro-oxindole inhibitor triggers significant ligand-induced changes in MDM2, the imidazo-indoles share similar binding modes for MDMX and MDM2, but cause only minimal induced-fit changes in the structures of both proteins. Our study includes the first structure of the complex between MDMX and a small molecule and should aid in developing efficient scaffolds for binding to MDMX and/or MDM2.

214 citations

Journal ArticleDOI
TL;DR: The study shows that the LPLNP model based on the known lncRNA–protein interactions can produce high-accuracy performances, and can be validated, indicating that the method is a useful tool for lnc RNA–protein interaction prediction.

114 citations

Journal ArticleDOI
12 Mar 2012-PLOS ONE
TL;DR: A novel pharmacophore-based interactive screening technology that builds on the role anchor residues, or deeply buried hot spots, have in PPIs, and redesigns these entry points with anchor-biased virtual multicomponent reactions, delivering tens of millions of readily synthesizable novel compounds.
Abstract: Although there is no shortage of potential drug targets, there are only a handful known low-molecular-weight inhibitors of protein-protein interactions (PPIs). One problem is that current efforts are dominated by low-yield high-throughput screening, whose rigid framework is not suitable for the diverse chemotypes present in PPIs. Here, we developed a novel pharmacophore-based interactive screening technology that builds on the role anchor residues, or deeply buried hot spots, have in PPIs, and redesigns these entry points with anchor-biased virtual multicomponent reactions, delivering tens of millions of readily synthesizable novel compounds. Application of this approach to the MDM2/p53 cancer target led to high hit rates, resulting in a large and diverse set of confirmed inhibitors, and co-crystal structures validate the designed compounds. Our unique open-access technology promises to expand chemical space and the exploration of the human interactome by leveraging in-house small-scale assays and user-friendly chemistry to rationally design ligands for PPIs with known structure.

91 citations

Journal ArticleDOI
TL;DR: Multicomponent reactions (MCRs) as discussed by the authors are one-pot reactions employing more than two starting materials, where most of the atoms of the starting materials are incorporated in the final product.
Abstract: Multicomponent reactions (MCRs) are one-pot reactions employing more than two starting materials, e.g. 3, 4, … 7, where most of the atoms of the starting materials are incorporated in the final product.1 Several descriptive tags are regularly attached to MCRs (Fig. 1): they are atom economic, e.g. the majority if not all of the atoms of the starting materials are incorporated in the product; they are efficient, e.g. they efficiently yield the product since the product is formed in one-step instead of multiple sequential steps; they are convergent, e.g. several starting materials combine in one reaction to form the product; they exhibit a very high bond-forming-index (BFI), e.g. several non-hydrogen atom bonds are formed in one synthetic transformation.2 Therefore MCRs are often a useful alternative to sequential multistep synthesis. Open in a separate window Figure 1 Above: multistep syntheses can be divergent (sequential) or convergent; below: in analogy MCR reactions are convergent and one or two component reactions are divergent or less convergent.

78 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a new approach to drug design called “combinatorial biosynthesis and drug discovery through nanofiltration”, which combines the efforts of a single investigator with those of a number of other scientists.
Abstract: Multicomponent reactions (MCRs) are one-pot reactions employing more than two starting materials, e.g. 3, 4, … 7, where most of the atoms of the starting materials are incorporated in the final product.1 Several descriptive tags are regularly attached to MCRs (Fig. 1): they are atom economic, e.g. the majority if not all of the atoms of the starting materials are incorporated in the product; they are efficient, e.g. they efficiently yield the product since the product is formed in one-step instead of multiple sequential steps; they are convergent, e.g. several starting materials combine in one reaction to form the product; they exhibit a very high bond-forming-index (BFI), e.g. several non-hydrogen atom bonds are formed in one synthetic transformation.2 Therefore MCRs are often a useful alternative to sequential multistep synthesis. Open in a separate window Figure 1 Above: multistep syntheses can be divergent (sequential) or convergent; below: in analogy MCR reactions are convergent and one or two component reactions are divergent or less convergent.

1,840 citations

Journal ArticleDOI
TL;DR: A critical appraisal of different synthetic approaches to Cu and Cu-based nanoparticles and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis.
Abstract: The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications i...

1,823 citations

Journal ArticleDOI
TL;DR: In the past two years, PubChem made substantial improvements, including a data model change for the data objects used by these pages as well as by programmatic users, and several new services were introduced.
Abstract: PubChem (https://pubchem.ncbi.nlm.nih.gov) is a popular chemical information resource that serves the scientific community as well as the general public, with millions of unique users per month. In the past two years, PubChem made substantial improvements. Data from more than 100 new data sources were added to PubChem, including chemical-literature links from Thieme Chemistry, chemical and physical property links from SpringerMaterials, and patent links from the World Intellectual Properties Organization (WIPO). PubChem's homepage and individual record pages were updated to help users find desired information faster. This update involved a data model change for the data objects used by these pages as well as by programmatic users. Several new services were introduced, including the PubChem Periodic Table and Element pages, Pathway pages, and Knowledge panels. Additionally, in response to the coronavirus disease 2019 (COVID-19) outbreak, PubChem created a special data collection that contains PubChem data related to COVID-19 and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

1,791 citations

Journal ArticleDOI
TL;DR: This Review highlights the progress made and pitfalls encountered as the field continues to search for MDM-targeted antitumour agents.
Abstract: The MDM2 and MDMX (also known as HDMX and MDM4) proteins are deregulated in many human cancers and exert their oncogenic activity predominantly by inhibiting the p53 tumour suppressor. However, the MDM proteins modulate and respond to many other signalling networks in which they are embedded. Recent mechanistic studies and animal models have demonstrated how functional interactions in these networks are crucial for maintaining normal tissue homeostasis, and for determining responses to oncogenic and therapeutic challenges. This Review highlights the progress made and pitfalls encountered as the field continues to search for MDM-targeted antitumour agents.

1,004 citations