scispace - formally typeset
Search or ask a question
Author

Wei Wang

Bio: Wei Wang is an academic researcher from Beijing Jiaotong University. The author has contributed to research in topics: Computer science & Intrusion detection system. The author has an hindex of 37, co-authored 228 publications receiving 4281 citations. Previous affiliations of Wei Wang include University of Trento & Nanyang Technological University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes an effective announcement network called CreditCoin, a novel privacy-preserving incentive announcement network based on Blockchain via an efficient anonymous vehicular announcement aggregation protocol, and shows that CreditCoin is efficient and practical in simulations of smart transportation.
Abstract: The vehicular announcement network is one of the most promising utilities in the communications of smart vehicles and in the smart transportation systems. In general, there are two major issues in building an effective vehicular announcement network. First, it is difficult to forward reliable announcements without revealing users’ identities. Second, users usually lack the motivation to forward announcements. In this paper, we endeavor to resolve these two issues through proposing an effective announcement network called CreditCoin , a novel privacy-preserving incentive announcement network based on Blockchain via an efficient anonymous vehicular announcement aggregation protocol. On the one hand, CreditCoin allows nondeterministic different signers (i.e., users) to generate the signatures and to send announcements anonymously in the nonfully trusted environment. On the other hand, with Blockchain, CreditCoin motivates users with incentives to share traffic information. In addition, transactions and account information in CreditCoin are tamper-resistant. CreditCoin also achieves conditional privacy since Trace manager in CreditCoin traces malicious users’ identities in anonymous announcements with related transactions. CreditCoin thus is able to motivate users to forward announcements anonymously and reliably. Extensive experimental results show that CreditCoin is efficient and practical in simulations of smart transportation.

441 citations

Journal ArticleDOI
TL;DR: This paper categorizes existing zero-shot learning methods and introduces representative methods under each category, and highlights promising future research directions of zero- shot learning.
Abstract: Most machine-learning methods focus on classifying instances whose classes have already been seen in training. In practice, many applications require classifying instances whose classes have not been seen previously. Zero-shot learning is a powerful and promising learning paradigm, in which the classes covered by training instances and the classes we aim to classify are disjoint. In this paper, we provide a comprehensive survey of zero-shot learning. First of all, we provide an overview of zero-shot learning. According to the data utilized in model optimization, we classify zero-shot learning into three learning settings. Second, we describe different semantic spaces adopted in existing zero-shot learning works. Third, we categorize existing zero-shot learning methods and introduce representative methods under each category. Fourth, we discuss different applications of zero-shot learning. Finally, we highlight promising future research directions of zero-shot learning.

403 citations

Journal ArticleDOI
23 Jan 2020
TL;DR: A thorough survey on the historical process and status quo of V2X technologies, as well as demonstration of emerging technology developing directions toward IoV can provide beneficial insights and inspirations for both academia and the IoV industry.
Abstract: To enable large-scale and ubiquitous automotive network access, traditional vehicle-to-everything (V2X) technologies are evolving to the Internet of Vehicles (IoV) for increasing demands on emerging advanced vehicular applications, such as intelligent transportation systems (ITS) and autonomous vehicles. In recent years, IoV technologies have been developed and achieved significant progress. However, it is still unclear what is the evolution path and what are the challenges and opportunities brought by IoV. For the aforementioned considerations, this article provides a thorough survey on the historical process and status quo of V2X technologies, as well as demonstration of emerging technology developing directions toward IoV. We first review the early stage when the dedicated short-range communications (DSRC) was issued as an important initial beginning and compared the cellular V2X with IEEE 802.11 V2X communications in terms of both the pros and cons. In addition, considering the advent of big data and cloud-edge regime, we highlight the key technical challenges and pinpoint the opportunities toward the big data-driven IoV and cloud-based IoV, respectively. We believe our comprehensive survey on evolutionary V2X technologies toward IoV can provide beneficial insights and inspirations for both academia and the IoV industry.

348 citations

Journal ArticleDOI
TL;DR: This paper thoroughly analyzes the permission-induced risk in Android apps on three levels in a systematic manner, and evaluates the usefulness of risky permissions for malapp detection with support vector machine, decision trees, as well as random forest.
Abstract: Android has been a major target of malicious applications (malapps). How to detect and keep the malapps out of the app markets is an ongoing challenge. One of the central design points of Android security mechanism is permission control that restricts the access of apps to core facilities of devices. However, it imparts a significant responsibility to the app developers with regard to accurately specifying the requested permissions and to the users with regard to fully understanding the risk of granting certain combinations of permissions. Android permissions requested by an app depict the app’s behavioral patterns. In order to help understanding Android permissions, in this paper, we explore the permission-induced risk in Android apps on three levels in a systematic manner. First, we thoroughly analyze the risk of an individual permission and the risk of a group of collaborative permissions. We employ three feature ranking methods, namely, mutual information, correlation coefficient, and T-test to rank Android individual permissions with respect to their risk. We then use sequential forward selection as well as principal component analysis to identify risky permission subsets. Second, we evaluate the usefulness of risky permissions for malapp detection with support vector machine, decision trees, as well as random forest. Third, we in depth analyze the detection results and discuss the feasibility as well as the limitations of malapp detection based on permission requests. We evaluate our methods on a very large official app set consisting of 310 926 benign apps and 4868 real-world malapps and on a third-party app sets. The empirical results show that our malapp detectors built on risky permissions give satisfied performance (a detection rate as 94.62% with a false positive rate as 0.6%), catch the malapps’ essential patterns on violating permission access regulations, and are universally applicable to unknown malapps (detection rate as 74.03%).

303 citations

Journal ArticleDOI
TL;DR: This work reconstructs the high-dimensional features of Android applications (apps) and employ multiple CNN to detect Android malware and proposes a hybrid model based on deep autoencoder (DAE) and convolutional neural network (CNN), which shows powerful ability in feature extraction and malware detection.
Abstract: Android security incidents occurred frequently in recent years. To improve the accuracy and efficiency of large-scale Android malware detection, in this work, we propose a hybrid model based on deep autoencoder (DAE) and convolutional neural network (CNN). First, to improve the accuracy of malware detection, we reconstruct the high-dimensional features of Android applications (apps) and employ multiple CNN to detect Android malware. In the serial convolutional neural network architecture (CNN-S), we use Relu, a non-linear function, as the activation function to increase sparseness and “dropout” to prevent over-fitting. The convolutional layer and pooling layer are combined with the full-connection layer to enhance feature extraction capability. Under these conditions, CNN-S shows powerful ability in feature extraction and malware detection. Second, to reduce the training time, we use deep autoencoder as a pre-training method of CNN. With the combination, deep autoencoder and CNN model (DAE-CNN) can learn more flexible patterns in a short time. We conduct experiments on 10,000 benign apps and 13,000 malicious apps. CNN-S demonstrates a significant improvement compared with traditional machine learning methods in Android malware detection. In details, compared with SVM, the accuracy with the CNN-S model is improved by 5%, while the training time using DAE-CNN model is reduced by 83% compared with CNN-S model.

212 citations


Cited by
More filters
01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

01 Jan 1990
TL;DR: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article, where the authors present an overview of their work.
Abstract: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article.

2,933 citations

Journal ArticleDOI
TL;DR: An overview of recommender systems as well as collaborative filtering methods and algorithms is provided, which explains their evolution, provides an original classification for these systems, identifies areas of future implementation and develops certain areas selected for past, present or future importance.
Abstract: Recommender systems have developed in parallel with the web. They were initially based on demographic, content-based and collaborative filtering. Currently, these systems are incorporating social information. In the future, they will use implicit, local and personal information from the Internet of things. This article provides an overview of recommender systems as well as collaborative filtering methods and algorithms; it also explains their evolution, provides an original classification for these systems, identifies areas of future implementation and develops certain areas selected for past, present or future importance.

2,639 citations

Journal ArticleDOI
TL;DR: The main challenges to be dealt with for the wide scale deployment of anomaly-based intrusion detectors, with special emphasis on assessment issues are outlined.

1,712 citations