scispace - formally typeset
Search or ask a question
Author

Wei Xie

Bio: Wei Xie is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: GNSS applications & Computer science. The author has an hindex of 13, co-authored 24 publications receiving 805 citations. Previous affiliations of Wei Xie include University of Wisconsin-Madison & Shanghai University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the electronic structure and energetic stability of A2BX6 halide compounds with the cubic and tetragonal variants of the perovskite-derived K2PtCl6 prototype structure are investigated computationally within the frameworks of density functional theory and hybrid functionals.
Abstract: The electronic structure and energetic stability of A2BX6 halide compounds with the cubic and tetragonal variants of the perovskite-derived K2PtCl6 prototype structure are investigated computationally within the frameworks of density-functional-theory (DFT) and hybrid (HSE06) functionals. The HSE06 calculations are undertaken for seven known A2BX6 compounds with A = K, Rb, and Cs; and B = Sn, Pd, Pt, Te, and X = I. Trends in band gaps and energetic stability are identified, which are explored further employing DFT calculations over a larger range of chemistries, characterized by A = K, Rb, Cs, B = Si, Ge, Sn, Pb, Ni, Pd, Pt, Se, and Te; and X = Cl, Br, I. For the systems investigated in this work, the band gap increases from iodide to bromide to chloride. Further, variations in the A site cation influences the band gap as well as the preferred degree of tetragonal distortion. Smaller A site cations such as K and Rb favor tetragonal structural distortions, resulting in a slightly larger band gap. For varia...

187 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the rational design methodology leveraging density functional theory for perovskite solar cells, which is the only solution-processable technology to outperform multicrystalline silicon and thin-film solar cells.
Abstract: Perovskite solar cells, with efficiencies of 22.1%, are the only solution-processable technology to outperform multicrystalline silicon and thin-film solar cells. Whereas substantial progress has been made in scalability and stability, toxicity concerns drive the need for lead replacement, intensifying research into the broad palette of elemental substitutions, solid solutions, and multidimensional structures. Perovskites have gone from comprising three to more than eight (CH3NH3, HC(NH2)2, Cs, Rb, Pb, Sn, I, Br) organic and inorganic constituents, and a variety of new embodiments including layered, double perovskites, and metal-deficient perovskites are being explored. Although most experimentation is guided by intuition and trial-and-error-based Edisonian approaches, rational strategies underpinned by computational screening and targeted experimental validation are emerging. In addressing emergent perovskites, this perspective discusses the rational design methodology leveraging density functional theor...

181 citations

Journal ArticleDOI
TL;DR: In this paper, a 2D hybrid lead chloride perovskite with phenethylammonium cation was used for white-light emission in light-emitting diodes.
Abstract: Hybrid two-dimensional (2D) lead halide perovskites have been employed in optoelectronic applications, including white-light emission for light-emitting diodes (LEDs). However, until now, there have been limited reports about white-light-emitting lead halide perovskites with experimental insights into the mechanism of the broadband emission. Here, we present white-light emission from a 2D hybrid lead chloride perovskite, using the widely known phenethylammonium cation. The single-crystal X-ray structural data, time-resolved photophysical measurements, and density functional theory calculations are consistent with broadband emission arising from strong exciton–phonon coupling with the organic lattice, which is independent of surface defects. The phenethylammonium lead chloride material exhibits a remarkably high color rendering index of 84, a CIE coordinate of (0.37,0.42), a CCT of 4426, and photostability, making it ideal for natural white LED applications.

179 citations

Posted Content
TL;DR: In this article, the electronic structure and energetic stability of A$_2$BX$_6$ halide compounds with the cubic and tetragonal variants of the perovskite-derived K$_ 2$PtCl$-6$ prototype structure are investigated computationally within the frameworks of density functional theory and hybrid functionals.
Abstract: The electronic structure and energetic stability of A$_2$BX$_6$ halide compounds with the cubic and tetragonal variants of the perovskite-derived K$_2$PtCl$_6$ prototype structure are investigated computationally within the frameworks of density-functional-theory (DFT) and hybrid (HSE06) functionals. The HSE06 calculations are undertaken for seven known A$_2$BX$_6$ compounds with A = K, Rb and Cs, and B = Sn, Pd, Pt, Te, and X = I. Trends in band gaps and energetic stability are identified, which are explored further employing DFT calculations over a larger range of chemistries, characterized by A = K, Rb, Cs, B = Si, Ge, Sn, Pb, Ni, Pd, Pt, Se and Te and X = Cl, Br, I. For the systems investigated in this work, the band gap increases from iodide to bromide to chloride. Further, variations in the A site cation influences the band gap as well as the preferred degree of tetragonal distortion. Smaller A site cations such as K and Rb favor tetragonal structural distortions, resulting in a slightly larger band gap. For variations in the B site in the (Ni, Pd, Pt) group and the (Se, Te) group, the band gap increases with increasing cation size. However, no observed chemical trend with respect to cation size for band gap was found for the (Si, Sn, Ge, Pb) group. The findings in this work provide guidelines for the design of halide A$_2$BX$_6$ compounds for potential photovoltaic applications.

139 citations

Journal ArticleDOI
Yanlin Guo1, Bin Liu1, Wei Xie1, Qun Luo1, Qian Li1 
TL;DR: In this article, the anti-phase boundary energy (APBE) is a vital contributing factor for the dislocation shearing mechanism which operates in Mg-RE alloys.

119 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The strategies toward structural design, growth control, and photophysics studies of 2D perovskites for high-performance electronic devices are rationalized and a range of their (opto)electronic applications is highlighted in each section.
Abstract: Conventional 3D organic-inorganic halide perovskites have recently undergone unprecedented rapid development. Yet, their inherent instabilities over moisture, light, and heat remain a crucial challenge prior to the realization of commercialization. By contrast, the emerging 2D Ruddlesden-Popper-type perovskites have recently attracted increasing attention owing to their great environmental stability. However, the research of 2D perovskites is just in their infancy. In comparison to 3D analogues, they are natural quantum wells with a much larger exciton binding energy. Moreover, their inner structural, dielectric, optical, and excitonic properties remain to be largely explored, limiting further applications. This review begins with an introduction to 2D perovskites, along with a detailed comparison to 3D counterparts. Then, a discussion of the organic spacer cation engineering of 2D perovskites is presented. Next, quasi-2D perovskites that fall between 3D and 2D perovskites are reviewed and compared. The unique excitonic properties, electron-phonon coupling, and polarons of 2D perovskites are then be revealed. A range of their (opto)electronic applications is highlighted in each section. Finally, a summary is given, and the strategies toward structural design, growth control, and photophysics studies of 2D perovskites for high-performance electronic devices are rationalized.

571 citations

Journal ArticleDOI
TL;DR: The work on understanding how a bulk material, with no obvious emissive sites, can emit every color of the visible spectrum is outlined, finding that greater out-of-plane octahedral tilting increases the propensity for the broad emission, enabling synthetic control over thebroad emission.
Abstract: ConspectusWith nearly 20% of global electricity consumed by lighting, more efficient illumination sources can enable massive energy savings. However, effectively creating the high-quality white light required for indoor illumination remains a challenge. To accurately represent color, the illumination source must provide photons with all the energies visible to our eye. Such a broad emission is difficult to achieve from a single material. In commercial white-light sources, one or more light-emitting diodes, coated by one or more phosphors, yield a combined emission that appears white. However, combining emitters leads to changes in the emission color over time due to the unequal degradation rates of the emitters and efficiency losses due to overlapping absorption and emission energies of the different components. A single material that emits broadband white light (a continuous emission spanning 400–700 nm) would obviate these problems.In 2014, we described broadband white-light emission upon near-UV excita...

571 citations

Journal ArticleDOI
TL;DR: Reviews on the theoretical understanding of the electronic, optical, and defect properties of Pb and Pb-free halide perovskites andperovskite derivatives are provided, as well as the experimental results available in the literature.
Abstract: Despite the exciting progress on power conversion efficiencies, the commercialization of the emerging lead (Pb) halide perovskite solar cell technology still faces significant challenges, one of which is the inclusion of toxic Pb. Searching for Pb-free perovskite solar cell absorbers is currently an attractive research direction. The approaches used for and the consequences of Pb replacement are reviewed herein. Reviews on the theoretical understanding of the electronic, optical, and defect properties of Pb and Pb-free halide perovskites and perovskite derivatives are provided, as well as the experimental results available in the literature. The theoretical understanding explains well why Pb halide perovskites exhibit superior photovoltaic properties, but Pb-free perovskites and perovskite derivatives do not.

503 citations

Journal ArticleDOI
TL;DR: This review highlights the different types of photoluminescence that may be attained from layered halide perovskites, with an emphasis on how the emission may be systematically tuned through changes to the bulk crystalline lattice: changes in composition, structure, and dimensionality.
Abstract: Layered halide perovskites offer a versatile platform for manipulating light through synthetic design. Although most layered perovskites absorb strongly in the ultraviolet (UV) or near-UV region, their emission can range from the UV to the infrared region of the electromagnetic spectrum. This emission can be very narrow, displaying high color purity, or it can be extremely broad, spanning the entire visible spectrum and providing high color rendition (or accurately reproducing illuminated colors). The origin of the photoluminescence can vary enormously. Strongly correlated electron–hole pairs, permanent lattice defects, transient light-induced defects, and ligand-field transitions in the inorganic layers and molecular chromophores in the organic layers can be involved in the emission mechanism. In this review, we highlight the different types of photoluminescence that may be attained from layered halide perovskites, with an emphasis on how the emission may be systematically tuned through changes to the bu...

460 citations

Journal ArticleDOI
TL;DR: The recent progress on the synthesis and fundamental aspects of mixed cation and halide perovskites correlating with device performance, long-term stability, and hysteresis are reviewed.
Abstract: Organic–inorganic halide perovskite materials (e.g., MAPbI3, FAPbI3, etc.; where MA = CH3NH3+, FA = CH(NH2)2+) have been studied intensively for photovoltaic applications. Major concerns for the commercialization of perovskite photovoltaic technology to take off include lead toxicity, long-term stability, hysteresis, and optimal bandgap. Therefore, there is still need for further exploration of alternative candidates. Elemental composition engineering of MAPbI3 and FAPbI3 has been proposed to address the above concerns. Among the best six certified power conversion efficiencies reported by National Renewable Energy Laboratory on perovskite-based solar cells, five are based on mixed perovskites (e.g., MAPbI1–xBrx, FA0.85MA0.15PbI2.55Br0.45, Cs0.1FA0.75MA0.15PbI2.49Br0.51). In this paper, we review the recent progress on the synthesis and fundamental aspects of mixed cation and halide perovskites correlating with device performance, long-term stability, and hysteresis. In the outlook, we outline the future ...

431 citations