scispace - formally typeset
Search or ask a question
Author

Wei-Ying Ma

Bio: Wei-Ying Ma is an academic researcher from Microsoft. The author has contributed to research in topics: Web page & Link analysis. The author has an hindex of 13, co-authored 27 publications receiving 1299 citations.

Papers
More filters
Proceedings ArticleDOI
13 Nov 2004
TL;DR: A novel iterative reinforced algorithm to utilize the user click-through data to improve search performance and effectively finds "virtual queries" for web pages and overcomes the challenges discussed above.
Abstract: The performance of web search engines may often deteriorate due to the diversity and noisy information contained within web pages. User click-through data can be used to introduce more accurate description (metadata) for web pages, and to improve the search performance. However, noise and incompleteness, sparseness, and the volatility of web pages and queries are three major challenges for research work on user click-through log mining. In this paper, we propose a novel iterative reinforced algorithm to utilize the user click-through data to improve search performance. The algorithm fully explores the interrelations between queries and web pages, and effectively finds "virtual queries" for web pages and overcomes the challenges discussed above. Experiment results on a large set of MSN click-through log data show a significant improvement on search performance over the naive query log mining algorithm as well as the baseline search engine.

296 citations

Proceedings ArticleDOI
25 Jul 2004
TL;DR: This paper gives empirical evidence that ideal Web-page summaries generated by human editors can indeed improve the performance of Web- page classification algorithms and proposes a new Web summarization-based classification algorithm that achieves an approximately 8.8% improvement over pure-text based methods.
Abstract: Web-page classification is much more difficult than pure-text classification due to a large variety of noisy information embedded in Web pages. In this paper, we propose a new Web-page classification algorithm based on Web summarization for improving the accuracy. We first give empirical evidence that ideal Web-page summaries generated by human editors can indeed improve the performance of Web-page classification algorithms. We then propose a new Web summarization-based classification algorithm and evaluate it along with several other state-of-the-art text summarization algorithms on the LookSmart Web directory. Experimental results show that our proposed summarization-based classification algorithm achieves an approximately 8.8% improvement as compared to pure-text-based classification algorithm. We further introduce an ensemble classifier using the improved summarization algorithm and show that it achieves about 12.9% improvement over pure-text based methods.

204 citations

Proceedings ArticleDOI
24 Sep 2007
TL;DR: A visual language modeling method for content-based image classification that transforms each image into a matrix of visual words, and assumes that each visual word is conditionally dependent on its neighbors, which can utilize the spatial correlation ofVisual words effectively in image classification.
Abstract: Although it has been studied for many years, image classification is still a challenging problem. In this paper, we propose a visual language modeling method for content-based image classification. It transforms each image into a matrix of visual words, and assumes that each visual word is conditionally dependent on its neighbors. For each image category, a visual language model is constructed using a set of training images, which captures both the co-occurrence and proximity information of visual words. According to how many neighbors are taken in consideration, three kinds of language models can be trained, including unigram, bigram and trigram, each of which corresponds to a different level of model complexity. Given a test image, its category is determined by estimating how likely it is generated under a specific category. Compared with traditional methods that are based on bag-of-words models, the proposed method can utilize the spatial correlation of visual words effectively in image classification. In addition, we propose to use the absent words, which refer to those appearing frequently in a category but not in the target image, to help image classification. Experimental results show that our method can achieve comparable accuracy while performing classification much more quickly.

186 citations

Patent
Benyu Zhang1, Hua-Jun Zeng1, Zheng Chen1, Wei-Ying Ma1, Li Li1, Ying Li1, Tarek Najm1 
15 Apr 2004
TL;DR: In this article, a method for verifying relevance between terms and Web site contents is described. But the method is based on a similarity classifier trained from mined web site content associated with directory data.
Abstract: Systems and methods for verifying relevance between terms and Web site contents are described. In one aspect, site contents from a bid URL are retrieved. Expanded term(s) semantically and/or contextually related to bid term(s) are calculated. Content similarity and expanded similarity measurements are calculated from respective combinations of the bid term(s), the site contents, and the expanded terms. Category similarity measurements between the expanded terms and the site contents are determined in view of a trained similarity classifier. The trained similarity classifier having been trained from mined web site content associated with directory data. A confidence value providing an objective measure of relevance between the bid term(s) and the site contents is determined from the content, expanded, and category similarity measurements evaluating the multiple similarity scores in view of a trained relevance classifier model.

180 citations

Patent
30 Sep 2003
TL;DR: In this paper, an implicit links search enhancement system and method for search engines that generates implicit links obtained from mining user access logs to facilitate enhanced local searching of web sites and intranets is presented.
Abstract: An implicit links enhancement system and method for search engines that generates implicit links obtained from mining user access logs to facilitate enhanced local searching of web sites and intranets. The implicit links search enhancement system and method includes extracting implicit links by mining users' access patterns and then using a modified link analysis algorithm to re-rank search results obtained from traditional search engines. More specifically, the implicit links search enhancement method includes extracting implicit links from a user access log, generating an implicit links graph from the extracted implicit links, and computing page rankings using the implicit links graph. The implicit links are extracted from the log using a two-item sequential pattern mining technique. Search results obtained from a search engine are re-ranked based on an implicit links analysis performed using an updated implicit links graph, a modified re-ranking formula, and at least one re-ranking technique.

99 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Book
Tie-Yan Liu1
27 Jun 2009
TL;DR: Three major approaches to learning to rank are introduced, i.e., the pointwise, pairwise, and listwise approaches, the relationship between the loss functions used in these approaches and the widely-used IR evaluation measures are analyzed, and the performance of these approaches on the LETOR benchmark datasets is evaluated.
Abstract: This tutorial is concerned with a comprehensive introduction to the research area of learning to rank for information retrieval. In the first part of the tutorial, we will introduce three major approaches to learning to rank, i.e., the pointwise, pairwise, and listwise approaches, analyze the relationship between the loss functions used in these approaches and the widely-used IR evaluation measures, evaluate the performance of these approaches on the LETOR benchmark datasets, and demonstrate how to use these approaches to solve real ranking applications. In the second part of the tutorial, we will discuss some advanced topics regarding learning to rank, such as relational ranking, diverse ranking, semi-supervised ranking, transfer ranking, query-dependent ranking, and training data preprocessing. In the third part, we will briefly mention the recent advances on statistical learning theory for ranking, which explain the generalization ability and statistical consistency of different ranking methods. In the last part, we will conclude the tutorial and show several future research directions.

2,515 citations

Patent
11 Jan 2011
TL;DR: In this article, an intelligent automated assistant system engages with the user in an integrated, conversational manner using natural language dialog, and invokes external services when appropriate to obtain information or perform various actions.
Abstract: An intelligent automated assistant system engages with the user in an integrated, conversational manner using natural language dialog, and invokes external services when appropriate to obtain information or perform various actions. The system can be implemented using any of a number of different platforms, such as the web, email, smartphone, and the like, or any combination thereof. In one embodiment, the system is based on sets of interrelated domains and tasks, and employs additional functionally powered by external services with which the system can interact.

1,462 citations

Proceedings ArticleDOI
06 Aug 2006
TL;DR: In this paper, the authors show that incorporating implicit feedback can augment other features, improving the accuracy of a competitive web search ranking algorithm by as much as 31% relative to the original performance.
Abstract: We show that incorporating user behavior data can significantly improve ordering of top results in real web search setting. We examine alternatives for incorporating feedback into the ranking process and explore the contributions of user feedback compared to other common web search features. We report results of a large scale evaluation over 3,000 queries and 12 million user interactions with a popular web search engine. We show that incorporating implicit feedback can augment other features, improving the accuracy of a competitive web search ranking algorithms by as much as 31% relative to the original performance.

1,119 citations

Journal ArticleDOI
TL;DR: This survey presents a unified view of a large number of recent approaches to AQE that leverage various data sources and employ very different principles and techniques.
Abstract: The relative ineffectiveness of information retrieval systems is largely caused by the inaccuracy with which a query formed by a few keywords models the actual user information need. One well known method to overcome this limitation is automatic query expansion (AQE), whereby the user’s original query is augmented by new features with a similar meaning. AQE has a long history in the information retrieval community but it is only in the last years that it has reached a level of scientific and experimental maturity, especially in laboratory settings such as TREC. This survey presents a unified view of a large number of recent approaches to AQE that leverage various data sources and employ very different principles and techniques. The following questions are addressed. Why is query expansion so important to improve search effectiveness? What are the main steps involved in the design and implementation of an AQE component? What approaches to AQE are available and how do they compare? Which issues must still be resolved before AQE becomes a standard component of large operational information retrieval systems (e.g., search engines)?

1,058 citations