scispace - formally typeset
Search or ask a question
Author

Wei-Ying Ma

Bio: Wei-Ying Ma is an academic researcher from Microsoft. The author has contributed to research in topics: Image retrieval & Web page. The author has an hindex of 97, co-authored 464 publications receiving 40914 citations. Previous affiliations of Wei-Ying Ma include University of California, Santa Barbara & Hewlett-Packard.


Papers
More filters
Journal ArticleDOI
TL;DR: Comparisons with other multiresolution texture features using the Brodatz texture database indicate that the Gabor features provide the best pattern retrieval accuracy.
Abstract: Image content based retrieval is emerging as an important research area with application to digital libraries and multimedia databases. The focus of this paper is on the image processing aspects and in particular using texture information for browsing and retrieval of large image data. We propose the use of Gabor wavelet features for texture analysis and provide a comprehensive experimental evaluation. Comparisons with other multiresolution texture features using the Brodatz texture database indicate that the Gabor features provide the best pattern retrieval accuracy. An application to browsing large air photos is illustrated.

4,017 citations

Proceedings ArticleDOI
20 Apr 2009
TL;DR: This work first model multiple individuals' location histories with a tree-based hierarchical graph (TBHG), and proposes a HITS (Hypertext Induced Topic Search)-based inference model, which regards an individual's access on a location as a directed link from the user to that location.
Abstract: The increasing availability of GPS-enabled devices is changing the way people interact with the Web, and brings us a large amount of GPS trajectories representing people's location histories. In this paper, based on multiple users' GPS trajectories, we aim to mine interesting locations and classical travel sequences in a given geospatial region. Here, interesting locations mean the culturally important places, such as Tiananmen Square in Beijing, and frequented public areas, like shopping malls and restaurants, etc. Such information can help users understand surrounding locations, and would enable travel recommendation. In this work, we first model multiple individuals' location histories with a tree-based hierarchical graph (TBHG). Second, based on the TBHG, we propose a HITS (Hypertext Induced Topic Search)-based inference model, which regards an individual's access on a location as a directed link from the user to that location. This model infers the interest of a location by taking into account the following three factors. 1) The interest of a location depends on not only the number of users visiting this location but also these users' travel experiences. 2) Users' travel experiences and location interests have a mutual reinforcement relationship. 3) The interest of a location and the travel experience of a user are relative values and are region-related. Third, we mine the classical travel sequences among locations considering the interests of these locations and users' travel experiences. We evaluated our system using a large GPS dataset collected by 107 users over a period of one year in the real world. As a result, our HITS-based inference model outperformed baseline approaches like rank-by-count and rank-by-frequency. Meanwhile, when considering the users' travel experiences and location interests, we achieved a better performance beyond baselines, such as rank-by-count and rank-by-interest, etc.

1,903 citations

Journal ArticleDOI
TL;DR: This paper attempts to provide a comprehensive survey of the recent technical achievements in high-level semantic-based image retrieval, identifying five major categories of the state-of-the-art techniques in narrowing down the 'semantic gap'.

1,713 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: A heterogeneous network embedding method is adopted, termed as TransR, to extract items' structural representations by considering the heterogeneity of both nodes and relationships and a final integrated framework, which is termed as Collaborative Knowledge Base Embedding (CKE), to jointly learn the latent representations in collaborative filtering.
Abstract: Among different recommendation techniques, collaborative filtering usually suffer from limited performance due to the sparsity of user-item interactions. To address the issues, auxiliary information is usually used to boost the performance. Due to the rapid collection of information on the web, the knowledge base provides heterogeneous information including both structured and unstructured data with different semantics, which can be consumed by various applications. In this paper, we investigate how to leverage the heterogeneous information in a knowledge base to improve the quality of recommender systems. First, by exploiting the knowledge base, we design three components to extract items' semantic representations from structural content, textual content and visual content, respectively. To be specific, we adopt a heterogeneous network embedding method, termed as TransR, to extract items' structural representations by considering the heterogeneity of both nodes and relationships. We apply stacked denoising auto-encoders and stacked convolutional auto-encoders, which are two types of deep learning based embedding techniques, to extract items' textual representations and visual representations, respectively. Finally, we propose our final integrated framework, which is termed as Collaborative Knowledge Base Embedding (CKE), to jointly learn the latent representations in collaborative filtering as well as items' semantic representations from the knowledge base. To evaluate the performance of each embedding component as well as the whole system, we conduct extensive experiments with two real-world datasets from different scenarios. The results reveal that our approaches outperform several widely adopted state-of-the-art recommendation methods.

1,246 citations

Proceedings ArticleDOI
Yu Zheng1, Quannan Li1, Yukun Chen1, Xing Xie1, Wei-Ying Ma1 
21 Sep 2008
TL;DR: An approach based on supervised learning to infer people's motion modes from their GPS logs is proposed, which identifies a set of sophisticated features, which are more robust to traffic condition than those other researchers ever used.
Abstract: Both recognizing human behavior and understanding a user's mobility from sensor data are critical issues in ubiquitous computing systems As a kind of user behavior, the transportation modes, such as walking, driving, etc, that a user takes, can enrich the user's mobility with informative knowledge and provide pervasive computing systems with more context information In this paper, we propose an approach based on supervised learning to infer people's motion modes from their GPS logs The contribution of this work lies in the following two aspects On one hand, we identify a set of sophisticated features, which are more robust to traffic condition than those other researchers ever used On the other hand, we propose a graph-based post-processing algorithm to further improve the inference performance This algorithm considers both the commonsense constraint of real world and typical user behavior based on location in a probabilistic manner Using the GPS logs collected by 65 people over a period of 10 months, we evaluated our approach via a set of experiments As a result, based on the change point-based segmentation method and Decision Tree-based inference model, the new features brought an eight percent improvement in inference accuracy over previous result, and the graph-based post-processing achieve a further four percent enhancement

1,054 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: It is proved the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density.
Abstract: A general non-parametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure: the mean shift. For discrete data, we prove the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density. The relation of the mean shift procedure to the Nadaraya-Watson estimator from kernel regression and the robust M-estimators; of location is also established. Algorithms for two low-level vision tasks discontinuity-preserving smoothing and image segmentation - are described as applications. In these algorithms, the only user-set parameter is the resolution of the analysis, and either gray-level or color images are accepted as input. Extensive experimental results illustrate their excellent performance.

11,727 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: CycleGAN as discussed by the authors learns a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss.
Abstract: Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples. Our goal is to learn a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping F : Y → X and introduce a cycle consistency loss to push F(G(X)) ≈ X (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.

11,682 citations

01 Jan 2002

9,314 citations

01 Jan 1998
TL;DR: A visual attention system, inspired by the behavior and the neuronal architecture of the early primate visual system, is presented, which breaks down the complex problem of scene understanding by rapidly selecting conspicuous locations to be analyzed in detail.

8,566 citations