scispace - formally typeset
Search or ask a question
Author

Wei Zhang

Bio: Wei Zhang is an academic researcher from University of Science and Technology of China. The author has contributed to research in topics: Magnetorheological fluid & Elastomer. The author has an hindex of 5, co-authored 5 publications receiving 286 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a magnetorheological plastomer (MRP) was developed by dispersing iron particles into a plastic polyurethane (PU) matrix, and the dynamic properties of the MRP material were systematically tested and the influences of the iron particle content and magnetic field were analyzed.
Abstract: A novel high-performance magnetorheological material, named as magnetorheological plastomer (MRP), was developed by dispersing iron particles into a plastic polyurethane (PU) matrix. The dynamic properties (including storage modulus and loss factor) of the MRP material were systematically tested and the influences of the iron particle content and magnetic field were analyzed. It is found that the anisotropic MRP product with 80% iron particle weight fraction (A-MRP-80), shows a high dynamic property: the maximum magneto-induced storage modulus is 6.54 MPa; the relative MR effect reaches as high as 532%; the loss factor can be reduced to 0.03 by adjusting magnetic field. This kind of MRP shows a much higher magnetorheological performance than the previously reported magnetorhelogical elastomer (MRE). The mechanism for its high MR performance was proposed and the influence of the iron particle distribution and temperature on the dynamic properties were discussed.

144 citations

Journal ArticleDOI
TL;DR: In this article, the interfacial friction damping properties of magnetorheological elastomers (MREs) were investigated experimentally using two kinds of carbonyl iron particles, with sizes of 1.1 and 9.0 µm.
Abstract: In this study, the interfacial friction damping properties of magnetorheological elastomers (MREs) were investigated experimentally. Two kinds of carbonyl iron particles, with sizes of 1.1 µm and 9.0 µm, were used to fabricate four MRE samples, whose particle weight fractions were 10%, 30%, 60% and 80%, respectively. Their microstructures were observed using an environmental scanning electron microscope (SEM). The dynamic performances of these samples, including shear storage modulus and loss factor were measured with a modified dynamic mechanical analyzer (DMA). The experimental results indicate that MRE samples fabricated with 1.1 µm carbonyl iron particles have obvious particle agglomeration, which results in the fluctuation of loss factor compared with other MRE samples fabricated with large particle sizes. The analysis implies that the interfacial friction damping mainly comes from the frictional sliding at the interfaces between the free rubber and the particles.

68 citations

Journal ArticleDOI
TL;DR: Magnetorheological elastomers (MREs) are composed of magnetizable particles (iron particles) and a soft rubber-like matrix as mentioned in this paper, and their mechanical properties, including modulus and damping capability, dep...
Abstract: Magnetorheological elastomers (MREs) are composed of magnetizable particles (iron particles) and a soft rubberlike matrix. Their mechanical properties, including modulus and damping capability, dep...

68 citations

Journal ArticleDOI
TL;DR: In this article, the absolute magnetorheological (MR) effect, storage modulus, and loss modulus of MRE samples after fatigue were evaluated by a modified dynamic mechanical analyzer.
Abstract: Fatigue properties of magnetorheological elastomer (MRE) samples were investigated based on cis-polybutadiene rubber by using a fatigue test machine. Three MRE samples with iron particles mass fraction of 60%, 70%, and 80% were fabricated, and their properties dependence of three strain amplitudes (50%, 75%, and 100%) were measured. The absolute magnetorheological (MR) effect, storage modulus, and loss modulus of MRE samples after fatigue were evaluated by a modified dynamic mechanical analyzer. The results revealed that MR effect, storage modulus, and loss modulus of MREs containing 80% iron particles depended strongly on the strain amplitudes and the number of cycles, while storage modulus and loss modulus of MREs containing 70% iron particles also depended on the strain amplitudes and the number of cycles but not as strongly as sample which contains 80% iron particles, but the properties of MREs containing 60% iron particles after cyclic deformation were almost independent of the fatigued conditions. In order to investigate the fatigue mechanism of MREs, the sample was carried out with a quasi-static tensile testing and its surface morphology during testing was observed in situ by scanning electron microscopy.

24 citations

Journal ArticleDOI
TL;DR: In this paper, the fabrication of magnetorheological elastomers was studied by two vulcanization methods, including heat vulcanisation (HV) and radiation vulcanized (RV), were employed to fabricate MRE samples.
Abstract: The fabrication of magnetorheological (MR) elastomers was studied by two vulcanization methods, including heat vulcanization (HV) and radiation vulcanization (RV), were employed to fabricate MRE samples. The dynamical mechanical properties were characterized by using a dynamic mechanic analyzer. In particular, both the MR effect and its durability were investigated. The experimental results showed that RV samples have large magneto-induced modulus, large zero-field modulus, and good durability property of MR effect. To explain these results, cubic deformation and plasticizer migration were analyzed. Large magneto-induced modulus of RV sample results from cubic deformation during vulcanization process. And the plasticizer migration results in better durability of MR effect.

16 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a state-of-the-art review on the recent progress of magnetorheological elastomer technology, with special emphasis on the research and development of MR elastomers and their applications.
Abstract: During the last few decades, magnetorheological (MR) elastomers have attracted a significant amount of attention for their enormous potential in engineering applications. Because they are a solid counterpart to MR fluids, MR elastomers exhibit a unique field-dependent material property when exposed to a magnetic field, and they overcome major issues faced in magnetorheological fluids, e.g. the deposition of iron particles, sealing problems and environmental contamination. Such advantages offer great potential for designing intelligent devices to be used in various engineering fields, especially in fields that involve vibration reduction and isolation. This paper presents a state of the art review on the recent progress of MR elastomer technology, with special emphasis on the research and development of MR elastomer devices and their applications. To keep the integrity of the knowledge, this review includes a brief introduction of MR elastomer materials and follows with a discussion of critical issues involved in designing magnetorheological elastomer devices, i.e. operation modes, coil placements and principle fundamentals. A comprehensive review has been presented on the research and development of MR elastomer devices, including vibration absorbers, vibration isolators, base isolators, sensing devices, and so on. A summary of the research on the modeling mechanical behavior for both the material and the devices is presented. Finally, the challenges and the potential facing magnetorheological elastomer technology are discussed, and suggestions have been made based on the authors’ knowledge and experience.

498 citations

Journal ArticleDOI
TL;DR: Magnetorheological (MR) materials are classified as smart materials due to their responsiveness to external magnetic stimuli as discussed by the authors, and they have led to broad applications in several potential fields.
Abstract: Magnetorheological (MR) materials are classified as smart materials due to their responsiveness to external magnetic stimuli. Intensive research on MR materials has led to broad applications in several potential fields. A solid carrier matrix state called MR elastomer with its exceptional magnetic responsive feature is obtained by merging magnetizable particles within an elastomeric polymer. This integration results in outstanding characteristics on the rheological performances. Special prominence is given to the understanding of the base materials and fabrication as well as the functional behavior through various characterization methods. Broad applications of MREs are also explored to provide a profound market picture and to motivate researchers to develop novel technology. The functional behavior of MREs is briefly explained. The art of the materials provides the current position and mapping of the matrix and filler particles. Types of matrix and particles are mentioned together with the level of the research interest on MREs. Description of the fabrication is provided in simple diagrams as summarized from previous works to enhance the MREs performance. The possible tests to reveal the characteristics of the MREs are delivered with the global experimental setup. The review also explains the applications of MREs as well as discussion on the MREs future promising applications.

287 citations

Journal ArticleDOI
TL;DR: In this article, a review of electrorheological fluid, a special type of suspension with controllable fluidity by an electric field, generally contains semiconducting or polarizable materials as electro-responsive parts.
Abstract: An electrorheological fluid, a special type of suspension with controllable fluidity by an electric field, generally contains semiconducting or polarizable materials as electro-responsive parts. These materials align in the direction of the applied electric field to generate a solid-like phase in the suspension. These electro-responsive smart materials, including dielectric inorganics, semiconducting polymers and their hybrids, and polymer/inorganic composites, are reviewed in terms of their mechanism, rheological analysis and dielectric characteristics.

213 citations

Journal ArticleDOI
TL;DR: A recent progressive review on magneto-rheological materials technology is presented in this paper, focusing on numerous application devices and systems utilizing magneto rheology materials, including fluids, foams, grease, elastomers, and plastomers.
Abstract: Smart materials are kinds of designed materials whose properties are controllable with the application of external stimuli such as the magnetic field, electric field, stress, and heat. Smart materials whose rheological properties are controlled by externally applied magnetic field are known as magneto-rheological materials. Magneto-rheological materials actively used for engineering applications include fluids, foams, grease, elastomers, and plastomers. In the last two decades, magneto-rheological materials have gained great attention of researchers significantly because of their salient controllable properties and potential applications to various fields such as automotive industry, civil environment, and military sector. This article offers a recent progressive review on the magneto-rheological materials technology, especially focusing on numerous application devices and systems utilizing magneto-rheological materials. Conceivable limitations, challenges, and comparable advantages of applying these magn...

180 citations

Journal ArticleDOI
TL;DR: Magnetorheological elastomers (MREs) are a class of recently emerged smart materials whose moduli are largely influenced when exposed to an external magnetic field as mentioned in this paper.
Abstract: Magnetorheological elastomers (MREs) are a class of recently emerged smart materials whose moduli are largely influenced when exposed to an external magnetic field. The MREs are particulate composites, where micro-sized magnetic particles are dispersed inside a non-magnetic polymeric matrix. These elastomers are known for changing their mechanical and rheological properties in the presence of a magnetic field. This change in properties is widely known as the magnetorheological (MR) effect. The MR effect depends on a number of factors such as type of matrix materials, type, concentration and distribution of magnetic particles, use of additives, working modes, and magnetic field strength. The investigation of MREs’ mechanical properties in both off-field and on-field (i.e. absence and presence of a magnetic field) is crucial to deploy them in real engineering applications. The common magneto-mechanical characterization experiments of MREs include static and dynamic compression, tensile, and shear tests in both off-field and on-field. This review article aims to provide a comprehensive overview of the magneto-mechanical characterizations of MREs along with brief coverage of the MRE materials and their fabrication methods.

150 citations