scispace - formally typeset
Search or ask a question
Author

Wei Zhou

Bio: Wei Zhou is an academic researcher from Nanjing Tech University. The author has contributed to research in topics: Perovskite (structure) & Oxide. The author has an hindex of 63, co-authored 226 publications receiving 12767 citations. Previous affiliations of Wei Zhou include Center for Advanced Materials & University of Queensland.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple and effective strategy for enhancing ORR and OER electrocatalytic activity in alkaline solution by introducing A-site cation deficiency in LaFeO3 perovskite was reported.
Abstract: Development of cost-effective and efficient electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of prime importance to emerging renewable energy technologies. Here, we report a simple and effective strategy for enhancing ORR and OER electrocatalytic activity in alkaline solution by introducing A-site cation deficiency in LaFeO3 perovskite; the enhancement effect is more pronounced for the OER than the ORR. Among the A-site cation deficient perovskites studied, La0.95FeO3-δ (L0.95F) demonstrates the highest ORR and OER activity and, hence, the best bifunctionality. The dramatic enhancement is attributed to the creation of surface oxygen vacancies and a small amount of Fe4+ species. This work highlights the importance of tuning cation deficiency in perovskites as an effective strategy for enhancing ORR and OER activity for applications in various oxygen-based energy storage and conversion processes.

578 citations

Journal ArticleDOI
TL;DR: In this paper, field effect transistors from single and few-layer rhenium disulfide were constructed and observed an anisotropic ratio of three to one along the two principle axes.
Abstract: Many two-dimensional materials exhibit isotropic properties, but anisotropy can extend the functionality of future devices. Here, the authors fabricate field-effect transistors from single and few-layer rhenium disulfide and observe an anisotropic ratio of three to one along the two principle axes

539 citations

Journal ArticleDOI
TL;DR: This review focuses on recent progress in the application of MOFs in electrocatalytic and photocatalytic water splitting for hydrogen generation, including both oxygen and hydrogen evolution.
Abstract: The development of clean and renewable energy materials as alternatives to fossil fuels is foreseen as a potential solution to the crucial problems of environmental pollution and energy shortages. Hydrogen is an ideal energy material for the future, and water splitting using solar/electrical energy is one way to generate hydrogen. Metal-organic frameworks (MOFs) are a class of porous materials with unique properties that have received rapidly growing attention in recent years for applications in water splitting due to their remarkable design flexibility, ultra-large surface-to-volume ratios and tunable pore channels. This review focuses on recent progress in the application of MOFs in electrocatalytic and photocatalytic water splitting for hydrogen generation, including both oxygen and hydrogen evolution. It starts with the fundamentals of electrocatalytic and photocatalytic water splitting and the related factors to determine the catalytic activity. The recent progress in the exploitation of MOFs for water splitting is then summarized, and strategies for designing MOF-based catalysts for electrocatalytic and photocatalytic water splitting are presented. Finally, major challenges in the field of water splitting are highlighted, and some perspectives of MOF-based catalysts for water splitting are proposed.

533 citations

Journal ArticleDOI
TL;DR: The perovskite SrNb0.1 Co0.7 Fe0.2 O3-δ (SNCF) is a promising OER electrocatalyst for the oxygen evolution reaction (OER), with remarkable activity and stability in alkaline solutions.
Abstract: The perovskite SrNb0.1 Co0.7 Fe0.2 O3-δ (SNCF) is a promising OER electrocatalyst for the oxygen evolution reaction (OER), with remarkable activity and stability in alkaline solutions. This catalyst exhibits a higher intrinsic OER activity, a smaller Tafel slope and better stability than the state-of-the-art precious-metal IrO2 catalyst and the well-known BSCF perovskite. The mass activity and stability are further improved by ball milling. Several factors including the optimized eg orbital filling, good ionic and charge transfer abilities, as well as high OH(-) adsorption and O2 desorption capabilities possibly contribute to the excellent OER activity.

410 citations

Journal ArticleDOI
TL;DR: Perovskite oxides are demonstrated for the first time as efficient electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solutions with improved HER performance originates from the modified surface electronic structures and properties of Pr0.5BSCF induced by the Pr-doping.
Abstract: Perovskite oxides are demonstrated for the first time as efficient electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solutions. A-site praseodymium-doped Pr0.5 (Ba0.5 Sr0.5 )0.5 Co0.8 Fe0.2 O3- δ (Pr0.5BSCF) exhibits dramatically enhanced HER activity and stability compared to Ba0.5 Sr0.5 Co0.8 Fe0.2 O3- δ (BSCF), superior to many well-developed bulk/nanosized nonprecious electrocatalysts. The improved HER performance originates from the modified surface electronic structures and properties of Pr0.5BSCF induced by the Pr-doping.

390 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER.
Abstract: Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable-energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low cost remains a great challenge. Here, we report a hybrid material consisting of Co₃O₄ nanocrystals grown on reduced graphene oxide as a high-performance bi-functional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although Co₃O₄ or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen doping of graphene. The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co₃O₄ and graphene.

4,898 citations

Journal ArticleDOI
TL;DR: This review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting.
Abstract: There is still an ongoing effort to search for sustainable, clean and highly efficient energy generation to satisfy the energy needs of modern society. Among various advanced technologies, electrocatalysis for the oxygen evolution reaction (OER) plays a key role and numerous new electrocatalysts have been developed to improve the efficiency of gas evolution. Along the way, enormous effort has been devoted to finding high-performance electrocatalysts, which has also stimulated the invention of new techniques to investigate the properties of materials or the fundamental mechanism of the OER. This accumulated knowledge not only establishes the foundation of the mechanism of the OER, but also points out the important criteria for a good electrocatalyst based on a variety of studies. Even though it may be difficult to include all cases, the aim of this review is to inspect the current progress and offer a comprehensive insight toward the OER. This review begins with examining the theoretical principles of electrode kinetics and some measurement criteria for achieving a fair evaluation among the catalysts. The second part of this review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting. Attention of this review is also paid to in situ approaches to electrocatalytic behavior during OER, and this information is crucial and can provide efficient strategies to design perfect electrocatalysts for OER. Finally, the OER mechanism from the perspective of both recent experimental and theoretical investigations is discussed, as well as probable strategies for improving OER performance with regards to future developments.

3,976 citations

Journal ArticleDOI
TL;DR: The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes, and the design and optimization of air-electrode structure are outlined.
Abstract: Because of the remarkably high theoretical energy output, metal–air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal–air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal–air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic–organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal–air batteries (219 references).

2,211 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales.
Abstract: Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets, delivering low carbon heat and power, decarbonising industry and, more recently, its ability to facilitate the net removal of CO2 from the atmosphere. However, despite this broad consensus and its technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus, in this paper we review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C, we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS), and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS, we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas, we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.

2,088 citations

Journal ArticleDOI
TL;DR: It is found that Fe(3)O(4)/N-GAs show a more positive onset potential, higher cathodic density, lower H(2)O-2) yield, and higher electron transfer number for the ORR in alkaline media than Fe( 3)O (4) NPs supported on N-doped carbon black or N- doped graphene sheets, highlighting the importance of the 3D macropores and high specific surface area of the GA support for
Abstract: Three-dimensional (3D) N-doped graphene aerogel (N-GA)-supported Fe3O4 nanoparticles (Fe3O4/N-GAs) as efficient cathode catalysts for the oxygen reduction reaction (ORR) are reported. The graphene hybrids exhibit an interconnected macroporous framework of graphene sheets with uniform dispersion of Fe3O4 nanoparticles (NPs). In studying the effects of the carbon support on the Fe3O4 NPs for the ORR, we found that Fe3O4/N-GAs show a more positive onset potential, higher cathodic density, lower H2O2 yield, and higher electron transfer number for the ORR in alkaline media than Fe3O4 NPs supported on N-doped carbon black or N-doped graphene sheets, highlighting the importance of the 3D macropores and high specific surface area of the GA support for improving the ORR performance. Furthermore, Fe3O4/N-GAs show better durability than the commercial Pt/C catalyst.

1,952 citations