scispace - formally typeset
Search or ask a question
Author

Weifeng Lv

Bio: Weifeng Lv is an academic researcher from Beihang University. The author has contributed to research in topics: Computer science & Floating car data. The author has an hindex of 25, co-authored 138 publications receiving 2768 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper investigated the relationship between the transmissibility of COVID-19 and the temperature/humidity, by controlling for various demographic, socioeconomic, geographic, healthcare and policy factors and correcting for cross-sectional correlation.
Abstract: With the ongoing global pandemic of COVID-19, a question is whether the coming summer in the northern hemisphere will reduce the transmission intensity of COVID-19 with increased humidity and temperature. In this paper, we investigate this problem using the data from the cases with symptom-onset dates from January 19 to February 10, 2020 for 100 Chinese cities, and cases with confirmed dates from March 15 to April 25 for 1,005 U.S. counties. Statistical analysis is performed to assess the relationship between the transmissibility of COVID-19 and the temperature/humidity, by controlling for various demographic, socio-economic, geographic, healthcare and policy factors and correcting for cross-sectional correlation. We find a similar influence of the temperature and relative humidity on effective reproductive number (R values) of COVID-19 for both China and the U.S. before lockdown in both countries: one-degree Celsius increase in temperature reduces R value by about 0.023 (0.026 (95% CI [-0.0395,-0.0125]) in China and 0.020 (95% CI [-0.0311, -0.0096]) in the U.S.), and one percent relative humidity rise reduces R value by 0.0078 (0.0076 (95% CI [-0.0108,-0.0045]) in China and 0.0080 (95% CI [-0.0150,-0.0010]) in the U.S.). If assuming a 30 degree and 25 percent increase in temperature and relative humidity from winter to summer in the northern hemisphere, we expect the R values to decline about 0.89 (0.69 by temperature and 0.20 by humidity). Moreover, after the lockdowns in China and the U.S., temperature and relative humidity still play an important role in reducing the R values but to a less extent. Given the notion that the non-intervened R values are around 2.5 to 3, only weather factors cannot make the R values below their critical condition of R<1, under which the epidemic diminishes gradually. Therefore, public health intervention such as social distancing is crucial to block the transmission of COVID-19 even in summer.

556 citations

Journal ArticleDOI
19 Jun 2019
TL;DR: This paper provides a comprehensive survey on the most influential and basic attacks as well as the corresponding defense mechanisms that have edge computing specific characteristics and can be practically applied to real-world edge computing systems.
Abstract: The rapid developments of the Internet of Things (IoT) and smart mobile devices in recent years have been dramatically incentivizing the advancement of edge computing. On the one hand, edge computing has provided a great assistance for lightweight devices to accomplish complicated tasks in an efficient way; on the other hand, its hasty development leads to the neglection of security threats to a large extent in edge computing platforms and their enabled applications. In this paper, we provide a comprehensive survey on the most influential and basic attacks as well as the corresponding defense mechanisms that have edge computing specific characteristics and can be practically applied to real-world edge computing systems. More specifically, we focus on the following four types of attacks that account for 82% of the edge computing attacks recently reported by Statista: distributed denial of service attacks, side-channel attacks, malware injection attacks, and authentication and authorization attacks. We also analyze the root causes of these attacks, present the status quo and grand challenges in edge computing security, and propose future research directions.

286 citations

Proceedings ArticleDOI
13 Aug 2017
TL;DR: This work proposes LinUOTD, a unified linear regression model with more than 200 million dimensions of features, which outperforms popular non-linear models in accuracy and can shed insights upon other industrial large-scale spatio-temporal prediction problems.
Abstract: Taxi-calling apps are gaining increasing popularity for their efficiency in dispatching idle taxis to passengers in need. To precisely balance the supply and the demand of taxis, online taxicab platforms need to predict the Unit Original Taxi Demand (UOTD), which refers to the number of taxi-calling requirements submitted per unit time (e.g., every hour) and per unit region (e.g., each POI). Predicting UOTD is non-trivial for large-scale industrial online taxicab platforms because both accuracy and flexibility are essential. Complex non-linear models such as GBRT and deep learning are generally accurate, yet require labor-intensive model redesign after scenario changes (e.g., extra constraints due to new regulations). To accurately predict UOTD while remaining flexible to scenario changes, we propose LinUOTD, a unified linear regression model with more than 200 million dimensions of features. The simple model structure eliminates the need of repeated model redesign, while the high-dimensional features contribute to accurate UOTD prediction. We further design a series of optimization techniques for efficient model training and updating. Evaluations on two large-scale datasets from an industrial online taxicab platform verify that LinUOTD outperforms popular non-linear models in accuracy. We envision our experiences to adopt simple linear models with high-dimensional features in UOTD prediction as a pilot study and can shed insights upon other industrial large-scale spatio-temporal prediction problems.

273 citations

Journal ArticleDOI
Xiao Liang1, Xudong Zheng1, Weifeng Lv1, Tongyu Zhu1, Ke Xu1 
TL;DR: This paper builds models for 20 million trajectories with fine granularity collected from more than 10 thousand taxis in Beijing, indicating the bursty nature of human mobility, similar to many other human activities.
Abstract: As a significant factor in urban planning, traffic forecasting and prediction of epidemics, modeling patterns of human mobility draws intensive attention from researchers for decades. Power-law distribution and its variations are observed from quite a few real-world human mobility datasets such as the movements of banking notes, trackings of cell phone users’ locations and trajectories of vehicles. In this paper, we build models for 20 million trajectories with fine granularity collected from more than 10 thousand taxis in Beijing. In contrast to most models observed in human mobility data, the taxis’ traveling displacements in urban areas tend to follow an exponential distribution instead of a power-law. Similarly, the elapsed time can also be well approximated by an exponential distribution. Worth mentioning, analysis of the interevent time indicates the bursty nature of human mobility, similar to many other human activities.

233 citations

Journal ArticleDOI
TL;DR: First, the pinning/depinning characteristics of skyrmion in a nanotrack with the voltage-controlled magnetic anisotropy (VCMA) effect are investigated and a compact model and design framework of Sky-RM is proposed for electrical evaluation.
Abstract: Magnetic skyrmion, vortex-like swirling topologically stable spin configurations, is appealing as information carrier for future nanoelectronics, owing to the stability, small size and extremely low driving current density. One of the most promising applications of skyrmion is to build racetrack memory (RM). Compared to domain wall-based RM (DW-RM), skyrmion-based RM (Sky-RM) possesses quite a few benefits in terms of energy, density and speed etc. Until now, the fundamental behaviors, including nucleation/annihilation, motion and detection of skyrmion have been intensively investigated. However, one indispensable function, i.e., pinning/depinning of skyrmion still remains an open question and has to be addressed before applying skyrmion for RM. Furthermore, Current research mainly focuses on physical investigations, whereas the electrical design and evaluation are still lacking. In this work, we aim to promote the development of Sky-RM from fundamental physics to realistic electronics. First, we investigate the pinning/depinning characteristics of skyrmion in a nanotrack with the voltage-controlled magnetic anisotropy (VCMA) effect. Then, we propose a compact model and design framework of Sky-RM for electrical evaluation. This work completes the elementary memory functionality of Sky-RM and fills the technical gap between the physicists and electronic engineers, making a significant step forward for the development of Sky-RM.

180 citations


Cited by
More filters
01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: A review of the underlying physics of the stabilization of skyrmions at room temperature and their prospective use for spintronic applications is discussed in this paper, where the development of topological spintronics holds promise for applications in the mid-term furure, even though many challenges such as the achievement of writing, processing and reading functionalities at room-temperature and in all-electrical manipulation schemes, still lie ahead.
Abstract: Magnetic skyrmions are small swirling topological defects in the magnetization texture. Their stabilization and dynamics depend strongly on their topological properties. In most cases, they are induced by chiral interactions between atomic spins in non-centrosymmetric magnetic compounds or in thin films with broken inversion symmetry. Skyrmions can be extremely small, with diameters in the nanometre range, and behave as particles that can be moved, created and annihilated, which makes them suitable for ‘abacus’-type applications in information storage and logic technologies. Until recently, skyrmions had been observed only at low temperature and, in most cases, under large applied magnetic fields. An intense research effort has led to the identification of thin-film and multilayer structures in which skyrmions are now stable at room temperature and can be manipulated by electrical currents. The development of skyrmion-based topological spintronics holds promise for applications in the mid-term furure, even though many challenges, such as the achievement of writing, processing and reading functionalities at room temperature and in all-electrical manipulation schemes, still lie ahead. Magnetic skyrmions are topologically protected spin whirls that hold promise for applications because they can be controllably moved, created and annihilated. In this Review, the underlying physics of the stabilization of skyrmions at room temperature and their prospective use for spintronic applications are discussed.

1,462 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the recent advances on the route to devices prototypes, focusing on thin film and multilayered structures in which skyrmions are stabilized above room temperature and manipulated by current.
Abstract: Magnetic skyrmions are small swirling topological defects in the magnetization texture stabilized by the protection due to their topology. In most cases they are induced by chiral interactions between atomic spins existing in non-centrosymmetric magnetic compounds or in thin films in which inversion symmetry is broken by the presence of an interface. The skyrmions can be extremely small with diameters in the nanometer range and, importantly, they behave as particles that can be moved, created or annihilated, making them suitable for abacus-type applications in information storage, logic or neuro-inspired technologies. Up to the last years skyrmions were observed only at low temperature (and in most cases under large applied fields) but important efforts of research has been recently devoted to find thin film and multilayered structures in which skyrmions are stabilized above room temperature and manipulated by current. This article focuses on these recent advances on the route to devices prototypes.

1,023 citations