scispace - formally typeset
Search or ask a question
Author

Weihua Li

Bio: Weihua Li is an academic researcher from East China University of Science and Technology. The author has contributed to research in topics: Medicine & Computer science. The author has an hindex of 38, co-authored 165 publications receiving 5623 citations. Previous affiliations of Weihua Li include Chinese Academy of Sciences & Ocean University of China.


Papers
More filters
Journal ArticleDOI
TL;DR: An ADMET structure-activity relationship database that collects, curates, and manages available ADMET-associated properties data from the published literature, and provides a user-friendly interface to query a specific chemical profile, using either CAS registry number, common name, or structure similarity.
Abstract: Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties play key roles in the discovery/development of drugs, pesticides, food additives, consumer products, and industrial chemicals. This information is especially useful when to conduct environmental and human hazard assessment. The most critical rate limiting step in the chemical safety assessment workflow is the availability of high quality data. This paper describes an ADMET structure–activity relationship database, abbreviated as admetSAR. It is an open source, text and structure searchable, and continually updated database that collects, curates, and manages available ADMET-associated properties data from the published literature. In admetSAR, over 210 000 ADMET annotated data points for more than 96 000 unique compounds with 45 kinds of ADMET-associated properties, proteins, species, or organisms have been carefully curated from a large number of diverse literatures. The database provides a user-friendly interface to query a...

1,315 citations

Journal ArticleDOI
TL;DR: Three supervised inference methods were developed here to predict DTI and used for drug repositioning and indicated that these methods could be powerful tools in prediction of DTIs and drugRepositioning.
Abstract: Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning.

709 citations

Journal ArticleDOI
TL;DR: This update of admetSAR, developed as a comprehensive source and free tool for the prediction of chemical ADMET properties, focuses on extension and optimization of existing models with significant quantity and quality improvement on training data.
Abstract: Summary admetSAR was developed as a comprehensive source and free tool for the prediction of chemical ADMET properties. Since its first release in 2012 containing 27 predictive models, admetSAR has been widely used in chemical and pharmaceutical fields. This update, admetSAR 2.0, focuses on extension and optimization of existing models with significant quantity and quality improvement on training data. Now 47 models are available for either drug discovery or environmental risk assessment. In addition, we added a new module named ADMETopt for lead optimization based on predicted ADMET properties. Availability and implementation Free available on the web at http://lmmd.ecust.edu.cn/admetsar2/. Supplementary information Supplementary data are available at Bioinformatics online.

606 citations

Journal ArticleDOI
TL;DR: A new classification method based on substructure pattern recognition, in which each molecule is represented as a subst structure pattern fingerprint based on a predefined substructure dictionary, and then a support vector machine (SVM) algorithm is applied to build the prediction model.
Abstract: Over the past decade, absorption, distribution, metabolism, and excretion (ADME) property evaluation has become one of the most important issues in the process of drug discovery and development. Since in vivo and in vitro evaluations are costly and laborious, in silico techniques had been widely used to estimate ADME properties of chemical compounds. Traditional prediction methods usually try to build a functional relationship between a set of molecular descriptors and a given ADME property. Although traditional methods have been successfully used in many cases, the accuracy and efficiency of molecular descriptors must be concerned. Herein, we report a new classification method based on substructure pattern recognition, in which each molecule is represented as a substructure pattern fingerprint based on a predefined substructure dictionary, and then a support vector machine (SVM) algorithm is applied to build the prediction model. Therefore, a direct connection between substructures and molecular properties is built. The most important substructure patterns can be identified via the information gain analysis, which could help to interpret the models from a medicinal chemistry perspective. Afterward, this method was verified with two data sets, one for blood-brain barrier (BBB) penetration and the other for human intestinal absorption (HIA). The results demonstrated that the overall predictive accuracies of the best HIA model for the training and test sets were 98.5 and 98.8%, and the overall predictive accuracies of the best BBB model for the training and test sets were 98.8 and 98.4%, which confirmed the reliability of our method. In the additional validations, the predictive accuracies were 94 and 69.5% for the HIA and the BBB models, respectively. Moreover, some of the representative key substructure patterns which significantly correlated with the HIA and BBB penetration properties were also presented.

234 citations

Journal ArticleDOI
TL;DR: The results suggested that the ADMET-score would be a comprehensive index to evaluate chemical drug-likeness, and might be helpful for users to select appropriate drug candidates for further development.
Abstract: Chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET), play key roles in drug discovery and development. A high-quality drug candidate should not only have sufficient efficacy against the therapeutic target, but also show appropriate ADMET properties at a therapeutic dose. A lot of in silico models are hence developed for prediction of chemical ADMET properties. However, it is still not easy to evaluate the drug-likeness of compounds in terms of so many ADMET properties. In this study, we proposed a scoring function named the ADMET-score to evaluate drug-likeness of a compound. The scoring function was defined on the basis of 18 ADMET properties predicted via our web server admetSAR. The weight of each property in the ADMET-score was determined by three parameters: the accuracy rate of the model, the importance of the endpoint in the process of pharmacokinetics, and the usefulness index. The FDA-approved drugs from DrugBank, the small molecules from ChEMBL and the old drugs withdrawn from the market due to safety concerns were used to evaluate the performance of the ADMET-score. The indices of the arithmetic mean and p-value showed that the ADMET-score among the three data sets differed significantly. Furthermore, we learned that there was no obvious linear correlation between the ADMET-score and QED (quantitative estimate of drug-likeness). These results suggested that the ADMET-score would be a comprehensive index to evaluate chemical drug-likeness, and might be helpful for users to select appropriate drug candidates for further development.

230 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The new SwissADME web tool is presented that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar are presented.
Abstract: To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous but access to the physical samples is limited. In that context, computer models constitute valid alternatives to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a collection of molecules to support their drug discovery endeavours.

6,135 citations

Journal ArticleDOI
TL;DR: A number of substructural features which can help to identify compounds that appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens are described.
Abstract: This report describes a number of substructural features which can help to identify compounds that appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens. The compounds identified by such substructural features are not recognized by filters commonly used to identify reactive compounds. Even though these substructural features were identified using only one assay detection technology, such compounds have been reported to be active from many different assays. In fact, these compounds are increasingly prevalent in the literature as potential starting points for further exploration, whereas they may not be.

2,791 citations

Journal ArticleDOI
TL;DR: A novel approach (pkCSM) which uses graph-based signatures to develop predictive models of central ADMET properties for drug development and performs as well or better than current methods.
Abstract: Drug development has a high attrition rate, with poor pharmacokinetic and safety properties a significant hurdle. Computational approaches may help minimize these risks. We have developed a novel approach (pkCSM) which uses graph-based signatures to develop predictive models of central ADMET properties for drug development. pkCSM performs as well or better than current methods. A freely accessible web server (http://structure.bioc.cam.ac.uk/pkcsm), which retains no information submitted to it, provides an integrated platform to rapidly evaluate pharmacokinetic and toxicity properties.

1,866 citations

Journal ArticleDOI
TL;DR: The latest update of DrugBank, DrugBank 4.0, has been further expanded to contain data on drug metabolism, absorption, distribution, metabolism, excretion and toxicity (ADMET) and other kinds of quantitative structure activity relationships (QSAR) information.
Abstract: DrugBank (http://www.drugbank.ca) is a comprehensive online database containing extensive biochemical and pharmacological information about drugs, their mechanisms and their targets. Since it was first described in 2006, DrugBank has rapidly evolved, both in response to user requests and in response to changing trends in drug research and development. Previous versions of DrugBank have been widely used to facilitate drug and in silico drug target discovery. The latest update, DrugBank 4.0, has been further expanded to contain data on drug metabolism, absorption, distribution, metabolism, excretion and toxicity (ADMET) and other kinds of quantitative structure activity relationships (QSAR) information. These enhancements are intended to facilitate research in xenobiotic metabolism (both prediction and characterization), pharmacokinetics, pharmacodynamics and drug design/discovery. For this release, >1200 drug metabolites (including their structures, names, activity, abundance and other detailed data) have been added along with >1300 drug metabolism reactions (including metabolizing enzymes and reaction types) and dozens of drug metabolism pathways. Another 30 predicted or measured ADMET parameters have been added to each DrugCard, bringing the average number of quantitative ADMET values for Food and Drug Administration-approved drugs close to 40. Referential nuclear magnetic resonance and MS spectra have been added for almost 400 drugs as well as spectral and mass matching tools to facilitate compound identification. This expanded collection of drug information is complemented by a number of new or improved search tools, including one that provides a simple analyses of drug-target, -enzyme and -transporter associations to provide insight on drug-drug interactions.

1,799 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations