scispace - formally typeset
Search or ask a question
Author

Weihua Zhang

Bio: Weihua Zhang is an academic researcher from Sichuan University. The author has contributed to research in topics: Iterative reconstruction & Deep learning. The author has an hindex of 9, co-authored 14 publications receiving 932 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A deep convolutional neural network is here used to map low-dose CT images towards its corresponding normal-dose counterparts in a patch-by-patch fashion, demonstrating a great potential of the proposed method on artifact reduction and structure preservation.
Abstract: In order to reduce the potential radiation risk, low-dose CT has attracted an increasing attention. However, simply lowering the radiation dose will significantly degrade the image quality. In this paper, we propose a new noise reduction method for low-dose CT via deep learning without accessing original projection data. A deep convolutional neural network is here used to map low-dose CT images towards its corresponding normal-dose counterparts in a patch-by-patch fashion. Qualitative results demonstrate a great potential of the proposed method on artifact reduction and structure preservation. In terms of the quantitative metrics, the proposed method has showed a substantial improvement on PSNR, RMSE and SSIM than the competing state-of-art methods. Furthermore, the speed of our method is one order of magnitude faster than the iterative reconstruction and patch-based image denoising methods.

603 citations

Journal ArticleDOI
TL;DR: In this paper, a learned experts' assessment-based reconstruction network (LEARN) was proposed for sparse-data computed tomography (CT) reconstruction, which utilizes application-oriented knowledge more effectively and recovers underlying images more favorably than competing algorithms.
Abstract: Compressive sensing (CS) has proved effective for tomographic reconstruction from sparsely collected data or under-sampled measurements, which are practically important for few-view computed tomography (CT), tomosynthesis, interior tomography, and so on. To perform sparse-data CT, the iterative reconstruction commonly uses regularizers in the CS framework. Currently, how to choose the parameters adaptively for regularization is a major open problem. In this paper, inspired by the idea of machine learning especially deep learning, we unfold the state-of-the-art “fields of experts”-based iterative reconstruction scheme up to a number of iterations for data-driven training, construct a learned experts’ assessment-based reconstruction network (LEARN) for sparse-data CT, and demonstrate the feasibility and merits of our LEARN network. The experimental results with our proposed LEARN network produces a superior performance with the well-known Mayo Clinic low-dose challenge data set relative to the several state-of-the-art methods, in terms of artifact reduction, feature preservation, and computational speed. This is consistent to our insight that because all the regularization terms and parameters used in the iterative reconstruction are now learned from the training data, our LEARN network utilizes application-oriented knowledge more effectively and recovers underlying images more favorably than competing algorithms. Also, the number of layers in the LEARN network is only 50, reducing the computational complexity of typical iterative algorithms by orders of magnitude.

321 citations

Proceedings ArticleDOI
18 Apr 2017
TL;DR: In this article, a deep convolutional neural network is trained to transform low-dose CT images towards normal-dose images, patch-by-patch, patch by patch.
Abstract: To reduce the potential radiation risk, low-dose CT has attracted much attention. However, simply lowering the radiation dose will lead to significant deterioration of the image quality. In this paper, we propose a noise reduction method for low-dose CT via deep neural network without accessing original projection data. A deep convolutional neural network is trained to transform low-dose CT images towards normal-dose CT images, patch by patch. Visual and quantitative evaluation demonstrates a competing performance of the proposed method.

95 citations

Journal ArticleDOI
Yi Zhang1, Yan Wang1, Weihua Zhang1, Feng Lin1, Yi-Fei Pu1, Jiliu Zhou1 
TL;DR: A fractional order model based on statistical iterative reconstruction framework, which illustrated better results than several existing methods, especially, in structure and texture preservation, was proposed.
Abstract: In order to reduce the radiation dose of the X-ray computed tomography (CT), low-dose CT has drawn much attention in both clinical and industrial fields. A fractional order model based on statistical iterative reconstruction framework was proposed in this study. To further enhance the performance of the proposed model, an adaptive order selection strategy, determining the fractional order pixel-by-pixel, was given. Experiments, including numerical and clinical cases, illustrated better results than several existing methods, especially, in structure and texture preservation.

82 citations

Journal ArticleDOI
TL;DR: This work presents a novel computed tomography reconstruction method for the few-view problem based on fractional calculus that achieves better performance than existing reconstruction methods, including filtered back projection (FBP), the total variation-based projections onto convex sets method (TV-POCS), and soft-threshold filtering (STH).
Abstract: This work presents a novel computed tomography (CT) reconstruction method for the few-view problem based on fractional calculus. To overcome the disadvantages of the total variation minimization method, we propose a fractional-order total variation-based image reconstruction method in this paper. The presented model adopts fractional-order total variation instead of traditional total variation. Different from traditional total variation, fractional-order total variation is derived by considering more neighboring image voxels such that the corresponding weights can be adaptively determined by the model, thus suppressing the over-smoothing effect. The discretization scheme of the fractional-order model is also given. Numerical and clinical experiments demonstrate that our method achieves better performance than existing reconstruction methods, including filtered back projection (FBP), the total variation-based projections onto convex sets method (TV-POCS), and soft-threshold filtering (STH).

79 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A perspective on the basic concepts of convolutional neural network and its application to various radiological tasks is offered, and its challenges and future directions in the field of radiology are discussed.
Abstract: Convolutional neural network (CNN), a class of artificial neural networks that has become dominant in various computer vision tasks, is attracting interest across a variety of domains, including radiology. CNN is designed to automatically and adaptively learn spatial hierarchies of features through backpropagation by using multiple building blocks, such as convolution layers, pooling layers, and fully connected layers. This review article offers a perspective on the basic concepts of CNN and its application to various radiological tasks, and discusses its challenges and future directions in the field of radiology. Two challenges in applying CNN to radiological tasks, small dataset and overfitting, will also be covered in this article, as well as techniques to minimize them. Being familiar with the concepts and advantages, as well as limitations, of CNN is essential to leverage its potential in diagnostic radiology, with the goal of augmenting the performance of radiologists and improving patient care. • Convolutional neural network is a class of deep learning methods which has become dominant in various computer vision tasks and is attracting interest across a variety of domains, including radiology. • Convolutional neural network is composed of multiple building blocks, such as convolution layers, pooling layers, and fully connected layers, and is designed to automatically and adaptively learn spatial hierarchies of features through a backpropagation algorithm. • Familiarity with the concepts and advantages, as well as limitations, of convolutional neural network is essential to leverage its potential to improve radiologist performance and, eventually, patient care.

2,189 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems, which combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure.
Abstract: In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise non-linearity) when the normal operator ( $H^{*}H$ , where $H^{*}$ is the adjoint of the forward imaging operator, $H$ ) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a $512\times 512$ image on the GPU.

1,757 citations

Journal ArticleDOI
TL;DR: This work combines the autoencoder, deconvolution network, and shortcut connections into the residual encoder–decoder convolutional neural network (RED-CNN) for low-dose CT imaging and achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases.
Abstract: Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data, whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder–decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases. Especially, our method has been favorably evaluated in terms of noise suppression, structural preservation, and lesion detection.

1,161 citations

Journal ArticleDOI
TL;DR: Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels.
Abstract: Noise is inherent to low-dose CT acquisition We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images The performance of this discriminator was used as an adversarial loss for the generator Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images The phantom and patients were scanned at 20% and 100% routine clinical dose Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images However, CNNs trained with adversarial loss captured image statistics of routine-dose images better Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels Testing took less than 10 s per CT volume CNN-based low-dose CT noise reduction in the image domain is feasible Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images

781 citations

Journal ArticleDOI
TL;DR: This paper introduces a new CT image denoising method based on the generative adversarial network (GAN) with Wasserstein distance and perceptual similarity that is capable of not only reducing the image noise level but also trying to keep the critical information at the same time.
Abstract: In this paper, we introduce a new CT image denoising method based on the generative adversarial network (GAN) with Wasserstein distance and perceptual similarity. The Wasserstein distance is a key concept of the optimal transform theory, and promises to improve the performance of the GAN. The perceptual loss compares the perceptual features of a denoised output against those of the ground truth in an established feature space, while the GAN helps migrate the data noise distribution from strong to weak. Therefore, our proposed method transfers our knowledge of visual perception to the image denoising task, is capable of not only reducing the image noise level but also keeping the critical information at the same time. Promising results have been obtained in our experiments with clinical CT images.

772 citations