scispace - formally typeset
Search or ask a question
Author

Weijian Chen

Other affiliations: University of New South Wales
Bio: Weijian Chen is an academic researcher from Swinburne University of Technology. The author has contributed to research in topics: Perovskite (structure) & Medicine. The author has an hindex of 17, co-authored 51 publications receiving 1054 citations. Previous affiliations of Weijian Chen include University of New South Wales.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A universal potassium passivation strategy is developed to improve the quality of slot-die printed tin oxide electron transport layers and demonstrate highly efficient and hysteresis-free flexible devices.
Abstract: Perovskite solar cells (PSCs) have reached an impressive efficiency over 23%. One of its promising characteristics is the low-cost solution printability, especially for flexible solar cells. However, printing large area uniform electron transport layers on rough and soft plastic substrates without hysteresis is still a great challenge. Herein, we demonstrate slot-die printed high quality tin oxide films for high efficiency flexible PSCs. The inherent hysteresis induced by the tin oxide layer is suppressed using a universal potassium interfacial passivation strategy regardless of fabricating methods. Results show that the potassium cations, not the anions, facilitate the growth of perovskite grains, passivate the interface, and contribute to the enhanced efficiency and stability. The small size flexible PSCs achieve a high efficiency of 17.18% and large size (5 × 6 cm2) flexible modules obtain an efficiency over 15%. This passivation strategy has shown great promise for pursuing high performance large area flexible PSCs.

525 citations

Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper varied the methylammonium (MA)/formamidinium (FA) composition in perovskite solar cells and compared the structure and density of the intragrain planar defects with device performance.
Abstract: Perovskite solar cells show excellent power conversion efficiencies, long carrier diffusion lengths and low recombination rates. This encourages a view that intragrain defects are electronically benign with little impact on device performance. In this study we varied the methylammonium (MA)/formamidinium (FA) composition in MA1–xFAxPbI3 (x = 0–1), and compared the structure and density of the intragrain planar defects with device performance, otherwise keeping the device nominally the same. We found that charge carrier lifetime, open-circuit voltage deficit and current density–voltage hysteresis correlate empirically with the density and structure of {111}c planar defects (x = 0.5–1) and {112}t twin boundaries (x = 0–0.1). The best performance parameters were found when essentially no intragrain planar defects were evident (x = 0.2). Similarly, reducing the density of {111}c planar defects through MASCN vapour treatment of FAPbI3 (x ≈ 1) also improved performance. These observations suggest that intragrain defect control can provide an important route for improving perovskite solar cell performance, in addition to well-established parameters such as grain boundaries and interfaces. The role of intragrain planar defects in halide perovskite solar cell devices remains elusive. Now, Li et al. tune the composition of the perovskite layer to minimize the planar defect density and observe an improvement in the device performance.

111 citations

Journal ArticleDOI
TL;DR: In this article, the photoluminescence properties and device performance of mixed-cation mixed-halide perovskite are dynamically monitored with and without K+ doping under bias light illumination via a confocal fluorescence microscope, together with ultrafast transient absorption as well as time-dependent and time-resolved PL measurements.
Abstract: Potassium (K+) doping has been recently discovered as an effective route to suppress hysteresis and improve the performance stability of perovskite solar cells. However, the mechanism of these K+ doping effects is still under debate, and rationalization of the improved performance in these perovskites is needed. Herein, the photoluminescence (PL) properties and device performance of mixed‐cation mixed‐halide perovskite are dynamically monitored with and without K+ doping under bias light illumination via a confocal fluorescence microscope, together with ultrafast transient absorption as well as time‐dependent and time‐resolved PL measurements. It is demonstrated that illumination is essential to trigger the passivation effect of K+ by forming KBr‐like compounds, leading to the elimination of interface trapping defects and suppression of mobile ion migration, thus resulting in improved power conversion efficiency and negligible current–voltage hysteresis of solar cells. This work provides novel insight into the hysteresis suppression upon K+ doping and highlights the significance of light illumination when using this protocol.

110 citations

Journal ArticleDOI
TL;DR: In this article, a comparison of 3D bulk CH3NH3PbBr3 single crystal to 2D perovskite by depth-resolved two-photon PL spectra reveals the contribution of carrier diffusion on energy transport at a distance beyond diffusion length is constantly negligible, though the carrier diffusion indeed exists in the 3D crystal.
Abstract: Photon recycling and carrier diffusion are the two plausible processes that primarily affect the carrier dynamics in halide perovskites, and therefore the evaluation of the performance of their photovoltaic and photonic devices. However, it is still challenging to isolate their individual contributions because both processes result in a similar emission redshift. Herein, it is confirmed that photon recycling is the dominant effect responsible for the observed redshifted emission. By applying one- and two-photon confocal emission microscopy on Ruddlesden–Popper type 2D perovskites, of which interplane carrier diffusion is strictly suppressed, the substantial PL redshift (72 meV) is well reproduced by the photon transport model. A comparison of 3D bulk CH3NH3PbBr3 single crystal to 2D perovskite by depth-resolved two-photon PL spectra reveals the contribution of carrier diffusion on energy transport at a distance beyond diffusion length is constantly negligible, though the carrier diffusion indeed exists in the 3D crystal. The investigation resolves the fundamental confusion and debate surrounding the issue and provides significant insights into carrier kinetics in perovskites, which is important for future developments in solar cells and other optoelectronic devices.

84 citations

Journal ArticleDOI
TL;DR: The design and facile synthesis of tip-decorated CdS NRs photocatalysts for efficient solar hydrogen production and the effective trapping of photogenerated electrons by the MoOxSy clusters are demonstrated.
Abstract: Metal and metal-oxide particles are commonly photodeposited on photocatalysts by reduction and oxidation reactions, respectively, consuming charges that are generated under illumination. This study reveals that amorphous MoOxSy clusters can be easily photodeposited at the tips of CdS nanorods (NRs) by in situ photodeposition for the first time. The as-prepared MoOxSy-decorated CdS samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma (ICP) to determine the composition and the possible formation pathways of the amorphous MoOxSy clusters. The MoOxSy-tipped CdS samples exhibited better hydrogen evolution performance than pure CdS under visible-light illumination. The enhanced activity is attributed to the formation of intimate interfacial contact between CdS and the amorphous MoOxSy clusters, which facilitates the charge separation and transfer. Through time-resolved photoluminescence (TRPL) measurements, it was clearly observed that all MoOxSy-decorated CdS samples with different loadings of MoOxSy showed a faster PL decay when compared to pure CdS, resulting from the effective trapping of photogenerated electrons by the MoOxSy clusters. Kelvin probe force microscopy (KPFM) was further used to study the surface potentials of pure CdS NRs and MoOxSy-decorated CdS NRs. A higher surface potential on MoOxSy-decorated CdS NRs was observed in the dark, indicating that the loading of MoOxSy resulted in a lower surface work function compared to pure CdS NRs. This contributed to the effective electron trapping and separation, which was also reflected by the increased photoelectrochemical response. Thus, this study demonstrates the design and facile synthesis of MoOxSy-tipped CdS NRs photocatalysts for efficient solar hydrogen production.

71 citations


Cited by
More filters
Journal ArticleDOI
21 Jan 2022-Science
TL;DR: Replacing the commonly used mesoporous–titanium dioxide electron transport layer with a thin layer of polyacrylic acid–stabilized tin(IV) oxide quantum dots enhanced light capture and largely suppressed nonradiative recombination at the ETL–perovskite interface, resulting in a certified power conversion efficiency of 25.4% and high operational stability.
Abstract: Improvements to perovskite solar cells (PSCs) have focused on increasing their power conversion efficiency (PCE) and operational stability and maintaining high performance upon scale-up to module sizes. We report that replacing the commonly used mesoporous–titanium dioxide electron transport layer (ETL) with a thin layer of polyacrylic acid–stabilized tin(IV) oxide quantum dots (paa-QD-SnO2) on the compact–titanium dioxide enhanced light capture and largely suppressed nonradiative recombination at the ETL–perovskite interface. The use of paa-QD-SnO2 as electron-selective contact enabled PSCs (0.08 square centimeters) with a PCE of 25.7% (certified 25.4%) and high operational stability and facilitated the scale-up of the PSCs to larger areas. PCEs of 23.3, 21.7, and 20.6% were achieved for PSCs with active areas of 1, 20, and 64 square centimeters, respectively. Description Tailoring tin oxide layers Mesoporous titanium dioxide is commonly used as the electron transport layer in perovskite solar cells, but electron transport layers based on tin(IV) oxide quantum dots could be more efficient, with a better-aligned conduction band and a higher carrier mobility. Kim et al. show that such quantum dots could conformally coat a textured fluorine-doped tin oxide electrode when stabilized with polyacrylic acid. Improved light trapping and reduced nonradiative recombination resulted in a certified power conversion efficiency of 25.4% and high operational stability. In larger-area minimodules, active areas as high as 64 square centimeters maintained certified power conversion efficiencies of more than 20%. —PDS Polymer-stabilized tin oxide nanoparticles suppress recombination at the electron-transport layer–perovskite interface.

631 citations

Journal Article
TL;DR: It is found that two distinct types of blinking are possible: conventional (A-type) blinking due to charging and discharging of the nanocrystal core, in which lower photoluminescence intensities correlate with shorter photolumscence lifetimes; and a second sort (B-type), in which large changes in the emission intensity are not accompanied by significant changes in emission dynamics.
Abstract: Photoluminescence blinking—random switching between states of high (ON) and low (OFF) emissivities—is a universal property of molecular emitters found in dyes, polymers, biological molecules and artificial nanostructures such as nanocrystal quantum dots, carbon nanotubes and nanowires. For the past 15 years, colloidal nanocrystals have been used as a model system to study this phenomenon. The occurrence of OFF periods in nanocrystal emission has been commonly attributed to the presence of an additional charge, which leads to photoluminescence quenching by non-radiative recombination (the Auger mechanism). However, this ‘charging’ model was recently challenged in several reports. Here we report time-resolved photoluminescence studies of individual nanocrystal quantum dots performed while electrochemically controlling the degree of their charging, with the goal of clarifying the role of charging in blinking. We find that two distinct types of blinking are possible: conventional (A-type) blinking due to charging and discharging of the nanocrystal core, in which lower photoluminescence intensities correlate with shorter photoluminescence lifetimes; and a second sort (B-type), in which large changes in the emission intensity are not accompanied by significant changes in emission dynamics. We attribute B-type blinking to charge fluctuations in the electron-accepting surface sites. When unoccupied, these sites intercept ‘hot’ electrons before they relax into emitting core states. Both blinking mechanisms can be electrochemically controlled and completely suppressed by application of an appropriate potential.

590 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss solution-based and vapour-phase coating methods for the fabrication of large-area perovskite films, examine the progress in performance and the parameters affecting the properties of large area coatings.
Abstract: Since the report in 2012 of a solid-state perovskite solar cell (PSC) with a power-conversion efficiency (PCE) of 9.7% and a stability of 500 h, intensive efforts have been made to increase the certified PCE, reaching 25.2% in 2019. The PCE of PSCs now exceeds that of conventional thin-film solar-cell technologies, and the rate at which this increase has been achieved is unprecedented in the history of photovoltaics. Moreover, the development of moisture-stable and heat-stable materials has increased the stability of PSCs. Small-area devices ( 100 cm2) substrates required for commercialization. Thus, materials and methods need to be developed for coating large-area PSCs. In this Review, we discuss solution-based and vapour-phase coating methods for the fabrication of large-area perovskite films, examine the progress in performance and the parameters affecting the properties of large-area coatings, and provide an overview of the methodologies for achieving high-efficiency perovskite solar modules. The scalable fabrication of perovskite solar cells and solar modules requires the development of new materials and coating methods. In this Review, we discuss solution-based and vapour-phase coating methods for large-area perovskite films and examine the progress in performance and the parameters affecting large-area coatings.

460 citations

Journal ArticleDOI
TL;DR: It is proposed from the current studies that engineering of perovskite film near the electron transporting layer and the hole transporting layer is of vital importance for achieving hysteresis-free PSCs and extremely high efficiency.
Abstract: Current-density-voltage (J-V) hysteresis in perovskite solar cells (PSCs) is a critical issue because it is related to power conversion efficiency and stability. Although parameters affecting the hysteresis have been already reported and reviewed, little investigation is reported on scan-direction-dependent J-V curves depending on perovskite composition. This review investigates J-V hysteric behaviors depending on perovskite composition in normal mesoscopic and planar structure. In addition, methodologies toward hysteresis-free PSCs are proposed. There is a specific trend in hysteresis in terms of J-V curve shape depending on composition. Ion migration combined with nonradiative recombination near interfaces plays a critical role in generating hysteresis. Interfacial engineering is found to be an effective method to reduce the hysteresis; however, bulk defect engineering is the most promising method to remove the hysteresis. Among the studied methods, KI doping is proved to be a universal approach toward hysteresis-free PSCs regardless of perovskite composition. It is proposed from the current studies that engineering of perovskite film near the electron transporting layer (ETL) and the hole transporting layer (HTL) is of vital importance for achieving hysteresis-free PSCs and extremely high efficiency.

311 citations