scispace - formally typeset
Search or ask a question
Author

Weijie J. Su

Bio: Weijie J. Su is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Artificial neural network & Differential privacy. The author has an hindex of 20, co-authored 83 publications receiving 2434 citations. Previous affiliations of Weijie J. Su include Peking University & Stanford University.

Papers published on a yearly basis

Papers
More filters
Journal Article
TL;DR: A second-order ordinary differential equation is derived, which is the limit of Nesterov's accelerated gradient method, and it is shown that the continuous time ODE allows for a better understanding of Nestersov's scheme.
Abstract: We derive a second-order ordinary differential equation (ODE) which is the limit of Nesterov's accelerated gradient method. This ODE exhibits approximate equivalence to Nesterov's scheme and thus can serve as a tool for analysis. We show that the continuous time ODE allows for a better understanding of Nesterov's scheme. As a byproduct, we obtain a family of schemes with similar convergence rates. The ODE interpretation also suggests restarting Nesterov's scheme leading to an algorithm, which can be rigorously proven to converge at a linear rate whenever the objective is strongly convex.

949 citations

Journal ArticleDOI
TL;DR: SLOPE as mentioned in this paper is the solution to the sorted L-one penalized estimator, where the regularizer is a sorted l1 norm, which penalizes the regression coefficients according to their rank: the higher the rank, stronger the signal, the larger the penalty.
Abstract: We introduce a new estimator for the vector of coefficients β in the linear model y = Xβ + z, where X has dimensions n × p with p possibly larger than n. SLOPE, short for Sorted L-One Penalized Estimation, is the solution to [Formula: see text]where λ1 ≥ λ2 ≥ … ≥ λ p ≥ 0 and [Formula: see text] are the decreasing absolute values of the entries of b. This is a convex program and we demonstrate a solution algorithm whose computational complexity is roughly comparable to that of classical l1 procedures such as the Lasso. Here, the regularizer is a sorted l1 norm, which penalizes the regression coefficients according to their rank: the higher the rank-that is, stronger the signal-the larger the penalty. This is similar to the Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B57 (1995) 289-300] procedure (BH) which compares more significant p-values with more stringent thresholds. One notable choice of the sequence {λ i } is given by the BH critical values [Formula: see text], where q ∈ (0, 1) and z(α) is the quantile of a standard normal distribution. SLOPE aims to provide finite sample guarantees on the selected model; of special interest is the false discovery rate (FDR), defined as the expected proportion of irrelevant regressors among all selected predictors. Under orthogonal designs, SLOPE with λBH provably controls FDR at level q. Moreover, it also appears to have appreciable inferential properties under more general designs X while having substantial power, as demonstrated in a series of experiments running on both simulated and real data.

303 citations

Proceedings Article
08 Dec 2014
TL;DR: In this paper, the authors derive a second-order ordinary differential equation (ODE), which is the limit of Nesterov's accelerated gradient method, which can serve as a tool for analysis.
Abstract: We derive a second-order ordinary differential equation (ODE), which is the limit of Nesterov's accelerated gradient method. This ODE exhibits approximate equivalence to Nesterov's scheme and thus can serve as a tool for analysis. We show that the continuous time ODE allows for a better understanding of Nesterov's scheme. As a byproduct, we obtain a family of schemes with similar convergence rates. The ODE interpretation also suggests restarting Nesterov's scheme leading to an algorithm, which can be rigorously proven to converge at a linear rate whenever the objective is strongly convex.

210 citations

Posted Content
TL;DR: The privacy guarantees of any hypothesis testing based definition of privacy (including the original differential privacy definition) converges to GDP in the limit under composition and a Berry–Esseen style version of the central limit theorem is proved, which gives a computationally inexpensive tool for tractably analysing the exact composition of private algorithms.
Abstract: Differential privacy has seen remarkable success as a rigorous and practical formalization of data privacy in the past decade. This privacy definition and its divergence based relaxations, however, have several acknowledged weaknesses, either in handling composition of private algorithms or in analyzing important primitives like privacy amplification by subsampling. Inspired by the hypothesis testing formulation of privacy, this paper proposes a new relaxation, which we term `$f$-differential privacy' ($f$-DP). This notion of privacy has a number of appealing properties and, in particular, avoids difficulties associated with divergence based relaxations. First, $f$-DP preserves the hypothesis testing interpretation. In addition, $f$-DP allows for lossless reasoning about composition in an algebraic fashion. Moreover, we provide a powerful technique to import existing results proven for original DP to $f$-DP and, as an application, obtain a simple subsampling theorem for $f$-DP. In addition to the above findings, we introduce a canonical single-parameter family of privacy notions within the $f$-DP class that is referred to as `Gaussian differential privacy' (GDP), defined based on testing two shifted Gaussians. GDP is focal among the $f$-DP class because of a central limit theorem we prove. More precisely, the privacy guarantees of \emph{any} hypothesis testing based definition of privacy (including original DP) converges to GDP in the limit under composition. The CLT also yields a computationally inexpensive tool for analyzing the exact composition of private algorithms. Taken together, this collection of attractive properties render $f$-DP a mathematically coherent, analytically tractable, and versatile framework for private data analysis. Finally, we demonstrate the use of the tools we develop by giving an improved privacy analysis of noisy stochastic gradient descent.

192 citations

Journal ArticleDOI
TL;DR: It is demonstrated that true features and null features are always interspersed on the Lasso path, and that this phenomenon occurs no matter how strong the effect sizes are.
Abstract: In regression settings where explanatory variables have very low correlations and there are relatively few effects, each of large magnitude, we expect the Lasso to find the important variables with few errors, if any. This paper shows that in a regime of linear sparsity—meaning that the fraction of variables with a nonvanishing effect tends to a constant, however small—this cannot really be the case, even when the design variables are stochastically independent. We demonstrate that true features and null features are always interspersed on the Lasso path, and that this phenomenon occurs no matter how strong the effect sizes are. We derive a sharp asymptotic trade-off between false and true positive rates or, equivalently, between measures of type I and type II errors along the Lasso path. This trade-off states that if we ever want to achieve a type II error (false negative rate) under a critical value, then anywhere on the Lasso path the type I error (false positive rate) will need to exceed a given threshold so that we can never have both errors at a low level at the same time. Our analysis uses tools from approximate message passing (AMP) theory as well as novel elements to deal with a possibly adaptive selection of the Lasso regularizing parameter.

181 citations


Cited by
More filters
Book
27 Nov 2013
TL;DR: The many different interpretations of proximal operators and algorithms are discussed, their connections to many other topics in optimization and applied mathematics are described, some popular algorithms are surveyed, and a large number of examples of proxiesimal operators that commonly arise in practice are provided.
Abstract: This monograph is about a class of optimization algorithms called proximal algorithms. Much like Newton's method is a standard tool for solving unconstrained smooth optimization problems of modest size, proximal algorithms can be viewed as an analogous tool for nonsmooth, constrained, large-scale, or distributed versions of these problems. They are very generally applicable, but are especially well-suited to problems of substantial recent interest involving large or high-dimensional datasets. Proximal methods sit at a higher level of abstraction than classical algorithms like Newton's method: the base operation is evaluating the proximal operator of a function, which itself involves solving a small convex optimization problem. These subproblems, which generalize the problem of projecting a point onto a convex set, often admit closed-form solutions or can be solved very quickly with standard or simple specialized methods. Here, we discuss the many different interpretations of proximal operators and algorithms, describe their connections to many other topics in optimization and applied mathematics, survey some popular algorithms, and provide a large number of examples of proximal operators that commonly arise in practice.

3,627 citations

Journal ArticleDOI
TL;DR: It is shown that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent, which made it possible to formulate a variational principle for the force-free magnetic fields.
Abstract: where A represents the magnetic vector potential, is an integral of the hydromagnetic equations. This -integral made it possible to formulate a variational principle for the force-free magnetic fields. The integral expresses the fact that motions cannot transform a given field in an entirely arbitrary different field, if the conductivity of the medium isconsidered infinite. In this paper we shall show that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent. These integrals, as we shall presently verify, are I2 =fbHvdV, (2)

1,858 citations