scispace - formally typeset
Search or ask a question
Author

Weike Zeng

Bio: Weike Zeng is an academic researcher from Harvard University. The author has contributed to research in topics: Biology & Polyadenylation. The author has an hindex of 2, co-authored 2 publications receiving 1656 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that an extensively modified GFP is a versatile and sensitive reporter in a variety of living plant cells and in transgenic plants, and the codon usage effect might be universal, allowing the design of recombinant proteins with high expression efficiency in evolutionarily distant species such as humans and maize.

1,426 citations

Journal ArticleDOI
15 Oct 1998-Nature
TL;DR: It is shown that a specific plant MAPKKK, NPK1, activates a MAPK cascade that leads to the suppression of early auxin response gene transcription, suggesting that auxin sensitivity may be balanced by antagonistic signalling pathways that use a distinctMAPK cascade in higher plants.
Abstract: The plant hormone auxin activates many early response genes that are thought to be responsible for diverse aspects of plant growth and development1. It has been proposed that auxin signal transduction is mediated by a conserved signalling cascade consisting of three protein kinases: the mitogen-activated protein kinase (MAPK), MAPK kinase (MAPKK) and MAPKK kinase (MAPKKK)2. Here we show that a specific plant MAPKKK, NPK1 (ref. 3), activates a MAPK cascade that leads to the suppression of early auxin response gene transcription. A mutation in the kinase domain abolishes NPK1 activity, and the presence of the carboxy-terminal domain diminishes the kinase activity. Moreover, the effects of NPK1 on the activation of a MAPK and the repression of early auxin response gene transcription are specifically eliminated by a MAPK phosphatase4. Transgenic tobacco plants overexpressing the NPK1 kinase domain produced seeds defective in embryo and endosperm development. These results suggest that auxin sensitivity may be balanced by antagonistic signalling pathways that use a distinct MAPK cascade in higher plants.

258 citations

Journal ArticleDOI
TL;DR: In this paper , the function of alternative 3' UTRs in response to high salt stress in S. alterniflora (Spartina alternifera), a monocotyledonous halophyte tolerant of high salt environments was reported.
Abstract: High salt stress continues to challenge the growth and survival of many plants. Alternative polyadenylation (APA) produces mRNAs with different 3'-untranslated regions (3' UTRs) to regulate gene expression at the post-transcriptional level. However, the roles of alternative 3' UTRs in response to salt stress remain elusive. Here, we report the function of alternative 3' UTRs in response to high salt stress in S. alterniflora (Spartina alterniflora), a monocotyledonous halophyte tolerant of high salt environments. We found that high salt stress induced global APA dynamics, and ∼42% of APA genes responded to salt stress. High salt stress led to 3' UTR lengthening of 207 transcripts through increasing the usage of distal poly(A) sites. Transcripts with alternative 3' UTRs were mainly enriched in salt stress-related ion transporters. Alternative 3' UTRs of HIGH-AFFINITY K+ TRANSPORTER 1 (SaHKT1) increased RNA stability and protein synthesis in vivo. Regulatory AU-rich elements were identified in alternative 3' UTRs, boosting the protein level of SaHKT1. RNAi-knock-down experiments revealed that the biogenesis of 3' UTR lengthening in SaHKT1 was controlled by the poly(A) factor CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 30 (SaCPSF30). Over-expression of SaHKT1 with an alternative 3' UTR in rice (Oryza sativa) protoplasts increased mRNA accumulation of salt-tolerance genes in an AU-rich element-dependent manner. These results suggest that mRNA 3' UTR lengthening is a potential mechanism in response to high salt stress. These results also reveal complex regulatory roles of alternative 3' UTRs coupling APA and regulatory elements at the post-transcriptional level in plants.

3 citations

Journal ArticleDOI
01 Oct 2022-Animals
TL;DR: High-altitude stress repressed ovarian development by suppressing the gene expression of LH/FSH hormone signaling genes and inducing intron retention of C2H2-type zinc finger transcription factors and RNA processing factors.
Abstract: Simple Summary To achieve optimal growth performance and improved fertility in animals living on high plateaus, it is important to understand how high-altitude stress reduces fertility in females. This study analyzed the transcriptome dynamics of Tibetan sheep ovaries under high-altitude stress. High-altitude stress suppressed the expression of follicular development marker genes and impaired the luteinizing hormone/follicle-stimulating hormone signaling pathway. High-altitude stress also increased abnormally spliced isoforms of transcription factors and RNA processing factors. Therefore, high-altitude stress may reduce the fertility of Tibetan sheep by disrupting the normal expression/hormone signaling of follicular development genes. Further work is needed to decipher whether this phenomenon is a unique feature of Tibetan sheep or a general mechanism in animals under high-altitude stress. Abstract High-altitude stress threatens the survival rate of Tibetan sheep and reduces their fertility. However, the molecular basis of this phenomenon remains elusive. Here, we used RNA-seq to elucidate the transcriptome dynamics of high-altitude stress in Tibetan sheep ovaries. In total, 104 genes were characterized as high-altitude stress-related differentially expressed genes (DEGs). In addition, 36 DEGs contributed to ovarian follicle development, and 28 of them were downregulated under high-altitude stress. In particular, high-altitude stress significantly suppressed the expression of two ovarian lymphatic system marker genes: LYVE1 and ADAMTS-1. Network analysis revealed that luteinizing hormone (LH)/follicle-stimulating hormone (FSH) signaling-related genes, such as EGR1, FKBP5, DUSP1, and FOS, were central regulators in the DEG network, and these genes were also suppressed under high-altitude stress. As a post-transcriptional regulation mechanism, alternative splicing (AS) is ubiquitous in Tibetan sheep. High-altitude stress induced 917 differentially alternative splicing (DAS) events. High-altitude stress modulated DAS in an AS-type-specific manner: suppressing skipped exon events but increasing retained intron events. C2H2-type zinc finger transcription factors and RNA processing factors were mainly enriched in DAS. These findings revealed high-altitude stress repressed ovarian development by suppressing the gene expression of LH/FSH hormone signaling genes and inducing intron retention of C2H2-type zinc finger transcription factors.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The transient gene expression system using Arabidopsis mesophyll protoplasts has proven an important and versatile tool for conducting cell-based experiments using molecular, cellular, biochemical, genetic, genomic and proteomic approaches to analyze the functions of diverse signaling pathways and cellular machineries.
Abstract: The transient gene expression system using Arabidopsis mesophyll protoplasts has proven an important and versatile tool for conducting cell-based experiments using molecular, cellular, biochemical, genetic, genomic and proteomic approaches to analyze the functions of diverse signaling pathways and cellular machineries. A well-established protocol that has been extensively tested and applied in numerous experiments is presented here. The method includes protoplast isolation, PEG-calcium transfection of plasmid DNA and protoplast culture. Physiological responses and high-throughput capability enable facile and cost-effective explorations as well as hypothesis-driven tests. The protoplast isolation and DNA transfection procedures take 6-8 h, and the results can be obtained in 2-24 h. The cell system offers reliable guidelines for further comprehensive analysis of complex regulatory mechanisms in whole-plant physiology, immunity, growth and development.

3,883 citations

Journal ArticleDOI
28 Feb 2002-Nature
TL;DR: An Arabidopsis thaliana leaf cell system based on the induction of early-defence gene transcription by flagellin, a highly conserved component of bacterial flagella that functions as a PAMP in plants and mammals is developed, suggesting that signalling events initiated by diverse pathogens converge into a conserved MAPK cascade.
Abstract: There is remarkable conservation in the recognition of pathogen-associated molecular patterns (PAMPs) by innate immune responses of plants, insects and mammals. We developed an Arabidopsis thaliana leaf cell system based on the induction of early-defence gene transcription by flagellin, a highly conserved component of bacterial flagella that functions as a PAMP in plants and mammals. Here we identify a complete plant MAP kinase cascade (MEKK1, MKK4/MKK5 and MPK3/MPK6) and WRKY22/WRKY29 transcription factors that function downstream of the flagellin receptor FLS2, a leucine-rich-repeat (LRR) receptor kinase. Activation of this MAPK cascade confers resistance to both bacterial and fungal pathogens, suggesting that signalling events initiated by diverse pathogens converge into a conserved MAPK cascade.

2,480 citations

Journal ArticleDOI
TL;DR: Nearly six decades after the structural elucidation of IAA, many aspects of auxin metabolism, transport and signalling are well established; however, more than a few fundamental questions and innumerable details remain unresolved.

2,044 citations

Journal ArticleDOI
TL;DR: A new series of binary vectors useful for Gateway cloning to facilitate transgenic experiments in plant biotechnology realized efficient cloning, constitutive expression using the cauliflower mosaic virus (CaMV) 35S promoter and the construction of fusion genes by simple clonase reaction with an entry clone.

1,542 citations

Journal ArticleDOI
TL;DR: The authors showed that H2O2 is a potent activator of mitogen-activated protein kinases (MAPKs) in Arabidopsis leaf cells using epitope tagging and a protoplast transient expression assay.
Abstract: Despite the recognition of H2O2 as a central signaling molecule in stress and wounding responses, pathogen defense, and regulation of cell cycle and cell death, little is known about how the H2O2 signal is perceived and transduced in plant cells We report here that H2O2 is a potent activator of mitogen-activated protein kinases (MAPKs) in Arabidopsis leaf cells Using epitope tagging and a protoplast transient expression assay, we show that H2O2 can activate a specific Arabidopsis mitogen-activated protein kinase kinase kinase, ANP1, which initiates a phosphorylation cascade involving two stress MAPKs, AtMPK3 and AtMPK6 Constitutively active ANP1 mimics the H2O2 effect and initiates the MAPK cascade that induces specific stress-responsive genes, but it blocks the action of auxin, a plant mitogen and growth hormone The latter observation provides a molecular link between oxidative stress and auxin signal transduction Finally, we show that transgenic tobacco plants that express a constitutively active tobacco ANP1 orthologue, NPK1, display enhanced tolerance to multiple environmental stress conditions without activating previously described drought, cold, and abscisic acid signaling pathways Thus, manipulation of key regulators of an oxidative stress signaling pathway, such as ANP1/NPK1, provides a strategy for engineering multiple stress tolerance that may greatly benefit agriculture

1,478 citations