scispace - formally typeset
Search or ask a question
Author

Weilong Cong

Other affiliations: Kansas State University
Bio: Weilong Cong is an academic researcher from Texas Tech University. The author has contributed to research in topics: Ultrasonic machining & Machining. The author has an hindex of 32, co-authored 127 publications receiving 4394 citations. Previous affiliations of Weilong Cong include Kansas State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a carbon fiber reinforced plastic (CFRP) composite is used for Fused Deposition Modeling (FDM) of thermoplastic matrix CFRP composites.
Abstract: Additive manufacturing (AM) technologies have been successfully applied in various applications. Fused deposition modeling (FDM), one of the most popular AM techniques, is the most widely used method for fabricating thermoplastic parts those are mainly used as rapid prototypes for functional testing with advantages of low cost, minimal wastage, and ease of material change. Due to the intrinsically limited mechanical properties of pure thermoplastic materials, there is a critical need to improve mechanical properties for FDM-fabricated pure thermoplastic parts. One of the possible methods is adding reinforced materials (such as carbon fibers) into plastic materials to form thermoplastic matrix carbon fiber reinforced plastic (CFRP) composites those could be directly used in the actual application areas, such as aerospace, automotive, and wind energy. This paper is going to present FDM of thermoplastic matrix CFRP composites and test if adding carbon fiber (different content and length) can improve the mechanical properties of FDM-fabricated parts. The CFRP feedstock filaments were fabricated from plastic pellets and carbon fiber powders for FDM process. After FDM fabrication, effects on the tensile properties (including tensile strength, Young's modulus, toughness, yield strength, and ductility) and flexural properties (including flexural stress, flexural modulus, flexural toughness, and flexural yield strength) of specimens were experimentally investigated. In order to explore the parts fracture reasons during tensile and flexural tests, fracture interface of CFRP composite specimens after tensile testing and flexural testing was observed and analyzed using SEM micrograph.

1,133 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive literature review on composite laminates is presented, which summarizes an up-to-date progress in mechanical drilling of composite materials reported in the literature, including conventional drilling, grinding, vibration assisted twist drilling, and high speed drilling.

636 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate proper fused deposition modeling process parameters to ensure the quality of the carbon fiber-reinforced plastic parts fabricated by fused deposition modelling, but there are no reported investigations o...
Abstract: Carbon fiber-reinforced plastic composites have been intensively used for many applications due to their attractive properties. The increasing demand of carbon fiber-reinforced plastic composites is driving novel manufacturing processes to be in short manufacturing cycle time and low production cost, which is difficult to realize during carbon fiber-reinforced plastic composites fabrication in common molding processes. Fused deposition modeling, as one of the additive manufacturing techniques, has been reported for fabricating carbon fiber-reinforced plastic composites. The process parameters used in fused deposition modeling of carbon fiber-reinforced plastic composites follow those in fused deposition modeling of pure plastic materials. After adding fiber reinforcements, it is crucial to investigate proper fused deposition modeling process parameters to ensure the quality of the carbon fiber-reinforced plastic parts fabricated by fused deposition modeling. However, there are no reported investigations o...

423 citations

Journal ArticleDOI
TL;DR: In this paper, a mechanistic model for cutting force in rotary ultrasonic machining of brittle materials is presented. But this model assumes that brittle fracture is the primary mechanism of material removal.
Abstract: Knowing cutting force in rotary ultrasonic machining (RUM) can help optimizing input variables. RUM of brittle materials has been investigated both experimentally and theoretically. However, there are no reports on cutting force models for RUM of brittle materials. This paper presents a mechanistic model for cutting force in RUM of brittle materials. Assuming that brittle fracture is the primary mechanism of material removal in RUM of brittle materials, the cutting force model is developed step by step. On the basis of this mechanistic model, relationships between cutting force and input variables (such as spindle speed, feed rate, ultrasonic vibration amplitude, abrasive size, and abrasive concentration) are predicted. Experiments are conducted for model verification and experimental results agree well with model predictions.

176 citations

Journal ArticleDOI
TL;DR: In this article, a review of laser deposition-additive manufacturing of ceramics and reinforced metal matrix composites (MMCs) is presented, where the main issues to be solved, corresponding solutions, and the trend of development are summarized and discussed.

155 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering.
Abstract: The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs. Due to the intrinsically limited mechanical properties and functionalities of printed pure polymer parts, there is a critical need to develop printable polymer composites with high performance. 3D printing offers many advantages in the fabrication of composites, including high precision, cost effective and customized geometry. This article gives an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering. Common 3D printing techniques such as fused deposition modeling, selective laser sintering, inkjet 3D printing, stereolithography, and 3D plotting are introduced. The formation methodology and the performance of particle-, fiber- and nanomaterial-reinforced polymer composites are emphasized. Finally, important limitations are identified to motivate the future research of 3D printing.

2,132 citations

Journal ArticleDOI
TL;DR: Additive manufacturing (AM) is fundamentally different from traditional formative or subtractive manufacturing in that it is the closest to the bottom-up manufacturing where a structure can be built into its designed shape using a "layer-by-layer" approach rather than casting or forming by technologies such as forging or machining as discussed by the authors.

1,124 citations

Journal ArticleDOI
TL;DR: A review on the latest advances in the 3D printing of ceramics and present the historical origins and evolution of each related technique is presented in this paper. And the main technical aspects, including feedstock properties, process control, post-treatments and energy source-material interactions, are also discussed.
Abstract: Along with extensive research on the three-dimensional (3D) printing of polymers and metals, 3D printing of ceramics is now the latest trend to come under the spotlight. The ability to fabricate ceramic components of arbitrarily complex shapes has been extremely challenging without 3D printing. This review focuses on the latest advances in the 3D printing of ceramics and presents the historical origins and evolution of each related technique. The main technical aspects, including feedstock properties, process control, post-treatments and energy source–material interactions, are also discussed. The technical challenges and advice about how to address these are presented. Comparisons are made between the techniques to facilitate the selection of the best ones in practical use. In addition, representative applications of the 3D printing of various types of ceramics are surveyed. Future directions are pointed out on the advancement on materials and forming mechanism for the fabrication of high-performance ceramic components.

1,082 citations