scispace - formally typeset
Search or ask a question
Author

Weimin Huang

Bio: Weimin Huang is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Medicine & Shape-memory alloy. The author has an hindex of 59, co-authored 419 publications receiving 15262 citations. Previous affiliations of Weimin Huang include Shenyang Jianzhu University & Ohio State University.


Papers
More filters
Journal ArticleDOI
TL;DR: Quantitative evaluation and comparison show that the proposed Bayesian framework for foreground object detection in complex environments provides much improved results.
Abstract: This paper addresses the problem of background modeling for foreground object detection in complex environments. A Bayesian framework that incorporates spectral, spatial, and temporal features to characterize the background appearance is proposed. Under this framework, the background is represented by the most significant and frequent features, i.e., the principal features , at each pixel. A Bayes decision rule is derived for background and foreground classification based on the statistics of principal features. Principal feature representation for both the static and dynamic background pixels is investigated. A novel learning method is proposed to adapt to both gradual and sudden "once-off" background changes. The convergence of the learning process is analyzed and a formula to select a proper learning rate is derived. Under the proposed framework, a novel algorithm for detecting foreground objects from complex environments is then established. It consists of change detection, change classification, foreground segmentation, and background maintenance. Experiments were conducted on image sequences containing targets of interest in a variety of environments, e.g., offices, public buildings, subway stations, campuses, parking lots, airports, and sidewalks. Good results of foreground detection were obtained. Quantitative evaluation and comparison with the existing method show that the proposed method provides much improved results.

1,120 citations

Journal ArticleDOI
TL;DR: A brief review on the current progress in stimuli-responsive shape memory materials can be found in this article, where the focus is on twofold, namely newly observed ones, and novel applications with great potential at present and in near future.

864 citations

Journal ArticleDOI
TL;DR: In this paper, some critical issues and problems in the development of TiNi thin films are discussed, including preparation and characterization considerations, residual stress and adhesion, frequency improvement, fatigue and stability, modeling of behavior as well as functionally graded or composite thin films.
Abstract: TiNi thin films have attracted much attention in recent years as intelligent and functional materials because of their unique properties. TiNi thin film based micro-actuators will become the actuator of choice in many aspects in the rapidly growing field of micro-electro-mechanical systems (MEMSs). In this review paper, some critical issues and problems in the development of TiNi thin films are discussed, including preparation and characterization considerations, residual stress and adhesion, frequency improvement, fatigue and stability, modeling of behavior as well as functionally graded or composite thin films. Comparison is made of TiNi SMA micro-actuation with other micro-actuation methods. Different types of TiNi thin film based microdevices, such as microgrippers, microswitches, microvalves and pumps, microsensors, etc. are also described and discussed.

743 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the new features of a polyurethane shape memory polymer: water-driven actuation and recovery in sequence (i.e., programmable).
Abstract: We demonstrate the new features of a polyurethane shape memory polymer: water-driven actuation and recovery in sequence (i.e., programmable). Hydrogen bonding is identified as the reason behind these features. In addition, the absorbed water is quantitatively separated into two parts, namely, the free water and bound water. Their individual contribution on the glass transition temperature is identified.

593 citations

Journal ArticleDOI
TL;DR: The focus is on the new features found in traditional SMMs, namely SMAs and SMPs, and a newly emerging type of SMM, namely shape memory hybrid (SMH), which enables enthusiasts to design SMMs with tailored properties/features for a particular application without the aid of experts.

535 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

Journal ArticleDOI
TL;DR: In this paper, the authors prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the e1 norm.
Abstract: This article is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individuallyq We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the e1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.

6,783 citations

Journal ArticleDOI
TL;DR: Two specific computer-aided detection problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification are studied, achieving the state-of-the-art performance on the mediastinal LN detection, and the first five-fold cross-validation classification results are reported.
Abstract: Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models pre-trained from natural image dataset to medical image tasks. In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computer-aided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks.

4,249 citations

Journal ArticleDOI
TL;DR: In this article, the authors categorize and evaluate face detection algorithms and discuss relevant issues such as data collection, evaluation metrics and benchmarking, and conclude with several promising directions for future research.
Abstract: Images containing faces are essential to intelligent vision-based human-computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation and expression recognition. However, many reported methods assume that the faces in an image or an image sequence have been identified and localized. To build fully automated systems that analyze the information contained in face images, robust and efficient face detection algorithms are required. Given a single image, the goal of face detection is to identify all image regions which contain a face, regardless of its 3D position, orientation and lighting conditions. Such a problem is challenging because faces are non-rigid and have a high degree of variability in size, shape, color and texture. Numerous techniques have been developed to detect faces in a single image, and the purpose of this paper is to categorize and evaluate these algorithms. We also discuss relevant issues such as data collection, evaluation metrics and benchmarking. After analyzing these algorithms and identifying their limitations, we conclude with several promising directions for future research.

3,894 citations