scispace - formally typeset
Search or ask a question
Author

Weimin Wang

Bio: Weimin Wang is an academic researcher from Huazhong Agricultural University. The author has contributed to research in topics: Megalobrama & Population. The author has an hindex of 32, co-authored 237 publications receiving 4465 citations. Previous affiliations of Weimin Wang include College of Fisheries & Chinese Ministry of Education.


Papers
More filters
Journal ArticleDOI
TL;DR: The traditional procedures for aquaculture waste treatment, mainly based on physical and chemical means, should be overcome by more site-specific approaches, taking into account the characteristics and resistibility of the aquatic environment.
Abstract: Goal, Scope and Background. Aquaculture activities are well known to be the major contributor to the increasing level of organic waste and toxic compounds in the aquaculture industry. Along with the development of intensive aquaculture in China, concerns are evoked about the possible effects of everincreasing aquaculture waste both on productivity inside the aquaculture system and on the ambient aquatic ecosystem. Therefore, it is apparent that appropriate waste treatment processes are needed for sustaining aquaculture development. This review aims at identifying the current status of aquaculture and aquaculture waste production in China. Main Features. China is the world's largest fishery nation in terms of total seafood production volume, a position it has maintained continuously since 1990. Freshwater aquaculture is a major part of the Chinese fishery industry. Marine aquaculture in China consists of both land-based and offshore aquaculture, with the latter mostly operated in shallow seas, mud flats and protected bays. The environmental impacts of aquaculture are also striking. Results. Case studies on pollution hot spots caused by aquaculture have been introduced. The quality and quantity of waste from aquaculture depends mainly on culture system characteristics and the choice of species, but also on feed quality and management. Wastewater without treatment, if continuously discharged into the aquatic environment, could result in remarkable elevation of the total organic matter contents and cause considerable economy lost. Waste treatments can be mainly classified into three categories: physical, chemical and biological methods. Discussion. The environmental impacts of different aquaculture species are not the same. New waste treatments are introduced as references for the potential development of the waste treatment system in China. The most appropriate waste treatment system for each site should be selected according to the sites'

352 citations

Journal ArticleDOI
TL;DR: Comparing properties of phytase from different sources are focused on, examining the effects of Phytase on P utilization and aquatic environment pollution, meanwhile providing commercial potentiality and impact factors ofphytase utilization in fish feed.

325 citations

Journal ArticleDOI
TL;DR: PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota, metabolic capacity and gut content enzyme activity.
Abstract: Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity.

302 citations

Journal ArticleDOI
06 Aug 2012-PLOS ONE
TL;DR: This study is the first comprehensive transcriptome analysis for a fish species belonging to the genus Megalobrama, and it is expected to be valuable for the development of molecular markers, construction of gene-based linkage map, and large-scale expression analysis of M. amblycephala.
Abstract: Background Blunt snout bream (Megalobrama amblycephala) is an herbivorous freshwater fish species native to China and has been recognized as a main aquaculture species in the Chinese freshwater polyculture system with high economic value. Right now, only limited EST resources were available for M. amblycephala. Recent advances in large-scale RNA sequencing provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. Methodology and Principal Findings Using 454 pyrosequencing, a total of 1,409,706 high quality reads (total length 577 Mbp) were generated from the normalized cDNA of pooled M. amblycephala individuals. These sequences were assembled into 26,802 contigs and 73,675 singletons. After BLAST searches against the NCBI non-redundant (NR) and UniProt databases with an arbitrary expectation value of E−10, over 40,000 unigenes were functionally annotated and classified using the FunCat functional annotation scheme. A comparative genomics approach revealed a substantial proportion of genes expressed in M. amblycephala tanscriptome to be shared across the genomes of zebrafish, medaka, tetraodon, fugu, stickleback, human, mouse, and chicken, and identified a substantial number of potentially novel M. amblycephala genes. A total number of 4,952 SSRs were found and 116 polymorphic loci have been characterized. A significant number of SNPs (25,697) and indels (23,287) were identified based on specific filter criteria in the M. amblycephala. Conclusions This study is the first comprehensive transcriptome analysis for a fish species belonging to the genus Megalobrama. These large EST resources are expected to be valuable for the development of molecular markers, construction of gene-based linkage map, and large-scale expression analysis of M. amblycephala, as well as comparative genome analysis for the genus Megalobrama fish species. The identified SSR and SNP markers will greatly benefit its breeding program and whole genome association studies.

216 citations

Journal ArticleDOI
TL;DR: Comparative analysis of six cell lines established from several fish species showed that C. idellus kidney cells are the most sensitive cell line to copper, epithelioma papulosum cyprini cells are more sensitive than other cells to Cr and Zn, while channel catfish ovary cell line is the mostsensitive one to Cd.

103 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

01 Jun 2005

3,154 citations

Journal Article

1,633 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations