scispace - formally typeset
Search or ask a question
Author

Weiyu Tseng

Bio: Weiyu Tseng is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Chemical vapor deposition & Nanowire. The author has an hindex of 4, co-authored 4 publications receiving 1244 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, single-crystal ZnO nanowires are synthesized using a vapor trapping chemical vapor deposition method and configured as field effect transistors, and electrical transport studies show n-type semiconducting behavior with a carrier concentration of ∼107cm−1 and an electron mobility of ∼17cm2∕Vs.
Abstract: Single-crystal ZnO nanowires are synthesized using a vapor trapping chemical vapor deposition method and configured as field-effect transistors. Electrical transport studies show n-type semiconducting behavior with a carrier concentration of ∼107cm−1 and an electron mobility of ∼17cm2∕Vs. The contact Schottky barrier between the Au/Ni electrode and nanowire is determined from the temperature dependence of the conductance. Thermionic emission is found to dominate the transport mechanism. The effect of oxygen adsorption on electron transport through the nanowires is investigated. The sensitivity to oxygen is demonstrated to be higher with smaller radii nanowires. Moreover, the oxygen detection sensitivity can be modulated by the gate voltage. These results indicate that ZnO holds high potential for nanoscale sensing applications.

811 citations

Journal ArticleDOI
TL;DR: In this paper, a chemical vapor deposition (CVD) process modified with vapor trapping method has been used to synthesize n-type ZnO nanowires with high carrier concentration without incorporating impurity dopants.
Abstract: A chemical vapor deposition (CVD) process modified with vapor trapping method has been used to synthesize n-type ZnO nanowires with high carrier concentration without incorporating impurity dopants. With this method, a spatial variation of synthesis condition was created and the donors were directly introduced into the nanowires during the synthesis process. Electron microscopy and electrical transport studies show that nanowires having distinct morphologies and electrical properties were obtained at different locations in the CVD system. The vapor trapping method elucidates the effect of synthesis conditions, and provides an approach to control nanowire growth for tailorable device applications.

370 citations

Journal ArticleDOI
TL;DR: In this article, the as-grown Ga2O3 nanowires are doped with zinc to increase its carrier concentration and subsequently fabricated into field-effect transistors, which exhibit p-type semiconducting behavior with a significant enhancement of conductivity.
Abstract: Quasione-dimensional Ga2O3 nanowires are synthesized via catalytic chemical vapor deposition method. Their morphology and crystal structure are characterized by electron microscopy and x-ray diffraction techniques, and their optical property is studied by photoluminescence measurement. To develop their future application in nanoelectronic devices, the as-grown Ga2O3 nanowires are doped with zinc to increase its carrier concentration and subsequently fabricated into field-effect transistors. Electron transport measurements show that the doped nanowires exhibit p-type semiconducting behavior with a significant enhancement of conductivity.

114 citations

Journal ArticleDOI
TL;DR: A paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1-5, 2004 as discussed by the authors presents an extended abstract of the paper presented in this conference.
Abstract: Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.

2,440 citations

Journal ArticleDOI
TL;DR: ZnO has received much attention over the past few years because it has a wide range of properties that depend on doping, including a range of conductivity from metallic to insulating (including n-type and p-type conductivity), high transparency, piezoelectricity, widebandgap semiconductivity, room-temperature ferromagnetism, and huge magneto-optic and chemical-sensing effects.

1,828 citations

Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations

Journal ArticleDOI
TL;DR: This work demonstrates the vertical and lateral integration of ZnO nanowires into arrays that are capable of producing sufficient power to operate real devices and uses the vertically integrated nanogenerator to power a nanowire pH sensor and a Nanowire UV sensor, thus demonstrating a self-powered system composed entirely of nanowiring.
Abstract: The lateral and vertical integration of ZnO piezoelectric nanowires allows for voltage and power outputs sufficient to power nanowire-based sensors.

1,465 citations