scispace - formally typeset
Search or ask a question
Author

Wen-Cai Ye

Bio: Wen-Cai Ye is an academic researcher from Jinan University. The author has contributed to research in topics: Medicine & Apoptosis. The author has an hindex of 41, co-authored 485 publications receiving 7917 citations. Previous affiliations of Wen-Cai Ye include Chinese Ministry of Education & Second Military Medical University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper intends to provide a comprehensive view of a variety of methods used in the extraction and isolation of natural products, presenting the advantage, disadvantage and practical examples of conventional and modern techniques involved in natural products research.
Abstract: Natural medicines were the only option for the prevention and treatment of human diseases for thousands of years. Natural products are important sources for drug development. The amounts of bioactive natural products in natural medicines are always fairly low. Today, it is very crucial to develop effective and selective methods for the extraction and isolation of those bioactive natural products. This paper intends to provide a comprehensive view of a variety of methods used in the extraction and isolation of natural products. This paper also presents the advantage, disadvantage and practical examples of conventional and modern techniques involved in natural products research.

817 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize advanced studies of autophagy in multidrug resistance (MDR) tumors, including the variable role of auto-gathering in MDR cancer cells.
Abstract: Multidrug resistance (MDR) occurs frequently after long-term chemotherapy, resulting in refractory cancer and tumor recurrence. Therefore, combatting MDR is an important issue. Autophagy, a self-degradative system, universally arises during the treatment of sensitive and MDR cancer. Autophagy can be a double-edged sword for MDR tumors: it participates in the development of MDR and protects cancer cells from chemotherapeutics but can also kill MDR cancer cells in which apoptosis pathways are inactive. Autophagy induced by anticancer drugs could also activate apoptosis signaling pathways in MDR cells, facilitating MDR reversal. Therefore, research on the regulation of autophagy to combat MDR is expanding and is becoming increasingly important. We summarize advanced studies of autophagy in MDR tumors, including the variable role of autophagy in MDR cancer cells.

424 citations

Journal ArticleDOI
TL;DR: A prenylated flavonoid, moralbanone, along with seven known compounds, including leachianone G and alpha-acetyl-amyrin, were isolated from the root bark of Morus alba L and showed potent antiviral activity and weak activity against herpes simplex type 1 virus.

235 citations

Journal ArticleDOI
TL;DR: The underlying antineoplastic mechanisms of arenobufagin that involve cross talk between apoptosis and autophagy via inhibition of the PI3K/Akt/mTOR pathway are elucidated.
Abstract: Hepatocellular carcinoma (HCC) is a deadly form of cancer without effective chemotherapy so far. Currently, only sorafenib, a multitargeted tyrosine kinase inhibitor, slightly improves survival in HCC patients. In searching for natural anti-HCC components from toad venom, which is frequently used in the treatment of liver cancer in traditional Chinese medicine, we discovered that arenobufagin, a bufadienolide from toad venom, had potent antineoplastic activity against HCC HepG2 cells as well as corresponding multidrug-resistant HepG2/ADM cells. We found that arenobufagin induced mitochondria-mediated apoptosis in HCC cells, with decreasing mitochondrial potential, as well as increasing Bax/Bcl-2 expression ratio, Bax translocation from cytosol to mitochondria. Arenobufagin also induced autophagy in HepG2/ADM cells. Autophagy-specific inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced arenobufagin-induced apoptosis, indicating that arenobufagin-mediated autophagy may protect HepG2/ADM cells from undergoing apoptotic cell death. In addition, we observed the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway by arenobufagin. Interestingly, inhibition of mTOR by rapamycin or siRNA duplexes augmented arenobufagin-induced apoptosis and autophagy. Finally, arenobufagin inhibited the growth of HepG2/ADM xenograft tumors, which were associated with poly (ADP-ribose) polymerase cleavage, light chain 3-II activation and mTOR inhibition. In summary, we first demonstrated the antineoplastic effect of arenobufagin on HCC cells both in vitro and in vivo. We elucidated the underlying antineoplastic mechanisms of arenobufagin that involve cross talk between apoptosis and autophagy via inhibition of the PI3K/Akt/mTOR pathway. This study may provide a rationale for future clinical application using arenobufagin as a chemotherapeutic agent for HCC.

176 citations

Journal ArticleDOI
TL;DR: This review critically describes the recent research on isolation, synthesis, and derivatization of BA and its natural analogs betulin and 23‐hydroxybetulinic acid and focuses on the current knowledge of antitumor properties, combination treatments, and pharmacological mechanisms of these compounds.
Abstract: Betulinic acid (BA) is a lupane-type pentacyclic triterpene, distributed ubiquitously throughout the plant kingdom. BA and its derivatives demonstrate multiple bioactivities, particularly an antitumor effect. This review critically describes the recent research on isolation, synthesis, and derivatization of BA and its natural analogs betulin and 23-hydroxybetulinic acid. The subsequent part of the review focuses on the current knowledge of antitumor properties, combination treatments, and pharmacological mechanisms of these compounds. A 3D-QSAR analysis of 62 BA derivatives against human ovarian cancer A2780 is also included to provide information concerning the structure-cytotoxicity relationships of these compounds.

149 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI

1,011 citations

Journal ArticleDOI
TL;DR: The role of Hypoxia in cancer therapy by regulating the tumor microenvironment (TME) is summarized and the potential of hypoxia-targeted therapy is highlighted to overcome hypoxian-associated resistance in cancer treatment.
Abstract: Clinical resistance is a complex phenomenon in major human cancers involving multifactorial mechanisms, and hypoxia is one of the key components that affect the cellular expression program and lead to therapy resistance. The present study aimed to summarize the role of hypoxia in cancer therapy by regulating the tumor microenvironment (TME) and to highlight the potential of hypoxia-targeted therapy. Relevant published studies were retrieved from PubMed, Web of Science, and Embase using keywords such as hypoxia, cancer therapy, resistance, TME, cancer, apoptosis, DNA damage, autophagy, p53, and other similar terms. Recent studies have shown that hypoxia is associated with poor prognosis in patients by regulating the TME. It confers resistance to conventional therapies through a number of signaling pathways in apoptosis, autophagy, DNA damage, mitochondrial activity, p53, and drug efflux. Hypoxia targeting might be relevant to overcome hypoxia-associated resistance in cancer treatment.

876 citations