scispace - formally typeset
Search or ask a question
Author

Wen Li

Other affiliations: Tongji University
Bio: Wen Li is an academic researcher from University of Hong Kong. The author has contributed to research in topics: Thermoelectric materials & Thermoelectric effect. The author has an hindex of 6, co-authored 9 publications receiving 259 citations. Previous affiliations of Wen Li include Tongji University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an extremely low lattice thermal conductivity of 0.5 W m−1 K−1 was achieved in SnTe-Cu2Te solid solutions, which is actually approaching the amorphous limit of SnTe.
Abstract: Due to point defect phonon scattering, formation of solid solutions has long been considered as an effective approach for enhancing thermoelectric performance through reducing the lattice thermal conductivity. The scattering of phonons by point defects mainly comes from the mass and strain fluctuations between the guest and the host atoms. Both the fluctuations can be maximized by point defects of interstitial atoms and/or vacancies in a crystal. Here, a demonstration of phonon scattering by interstitial Cu atoms is shown, leading to an extremely low lattice thermal conductivity of 0.5 W m−1 K−1 in SnTe-Cu2Te solid solutions. This is the lowest lattice thermal conductivity reported in SnTe-based materials so far, which is actually approaching the amorphous limit of SnTe. As a result, a peak thermoelectric figure of merit, zT, higher than 1 is achieved in Sn0.94Cu0.12Te at 850 K, without relying on other approaches for electrical performance enhancements. The strategy used here is believed to be equally applicable in thermoelectrics with interstitial point defects.

226 citations

Journal ArticleDOI
TL;DR: Experimental results show that the decarboxylation reaction of ketoprofen induced by triplet excited-state intramolecular proton transfer in water-rich and acidic solutions is facile in aqueous solutions with high water ratios (water/acetonitrile ≥50%) or acidic solutions with moderate and strong acid concentration.
Abstract: We present an investigation of the decarboxylation reaction of ketoprofen (KP) induced by triplet excited-state intramolecular proton transfer in water-rich and acidic solutions. Nanosecond time-resolved resonance Raman spectroscopy results show that the decarboxylation reaction is facile in aqueous solutions with high water ratios (water/acetonitrile ≥50%) or acidic solutions with moderate and strong acid concentration. These experimental results are consistent with results from density functional theory calculations in which 1) the activation energy barriers for the triplet-state intramolecular proton transfer and associated decarboxylation process become lower when more water molecules (from one up to four molecules) are involved in the reaction system and 2) perchloric acid, sulfuric acid, and hydrochloric acid can shuttle a proton from the carboxyl to carbonyl group through an initial intramolecular proton transfer of the triplet excited state, which facilitates the cleavage of the C-C bond, thus leading to the decarboxylation reaction of triplet state KP. During the decarboxylation process, the water molecules and acid molecules may act as bridges to mediate intramolecular proton transfer for the triplet state KP when KP is irradiated by ultraviolet light in water-rich or acidic aqueous solutions and subsequently it generates a triplet-protonated carbanion biradical species. The faster generation of triplet-protonated carbanion biradical in acidic solutions than in water-rich solutions with a high water ratio is also supported by the lower activation energy barrier calculated for the acid-mediated reactions versus those of water-molecule-assisted reactions.

42 citations

Journal ArticleDOI
Xiao Dong1, Hulei Yu1, Wen Li2, Yanzhong Pei2, Yue Chen1 
TL;DR: In this article, the effect of dopants (i.e., Mg, Ca, Sr, Ba, Eu, Yb, Zn, Cd, Hg, and In) on the band structures and electrical transport properties of SnTe was investigated based on the first-principles density functional theory including spin-orbit coupling.

25 citations

Journal ArticleDOI
TL;DR: The results reported here reveal large substituent effects on the distribution of the different forms of the XHQ-OAc compounds in largely aqueous solutions, and the implications for using these compounds as phototriggers are discussed.
Abstract: To investigate the substituent effect on the distribution of the forms of the ground-state species of 8-substituted 7-hydroxyquinolines, ultraviolet-absorption and resonance Raman experiments were performed for 8-chloro-7-hydroxyquinoline (CHQ—OAc) and 8-cyano-7-hydroxyquinoline (CyHQ—OAc) in acetonitrile (MeCN), in NaOH―H 2 O/MeCN (60:40, v/v, pH 11-12), and in H 2 O/MeCN (60:40, v/v, pH 6-7) solutions, and these results were compared to those previously reported for the 8-bromo-7-hydroxyquinoline (BHQ—OAc) compound. Swapping a bromine atom in BHQ―OAc for a chlorine atom in CHQ―OAc causes the amount of the tautomeric species to become larger, although the neutral species is still the predominant species for both systems in water-rich solutions. The absorption spectra and the resonance Raman spectra of CyHQ―OAc suggest that, because of the strong electron-withdrawing nature of the cyano substituent, a measurable amount of the anionic species is present and the tautomeric species cannot be easily detected in water-rich solutions. The results reported here reveal large substituent effects on the distribution of the different forms of the XHQ―OAc compounds in largely aqueous solutions. The steric effect of the 8-substituted group and competitive hydrogen bonding between the 8-substituted group and water molecules hinders the formation of a cyclic BHQ―OAc―water complex, and the electron-withdrawing property of the 8-substituted group enhances the deprotonation of the phenol group while disfavoring the formation of the positively charged quinoline nitrogen. We briefly discuss the implications of the substituent effects for using these compounds as phototriggers.

11 citations

Patent
09 Nov 2016
TL;DR: In this article, an argyrodite thermoelectric material, which is high in density, high in mechanical strength and high in thermal conductivity, is described, with simple substances being raw materials, carrying out material blending according to stoichiometric ratio of the chemical formula.
Abstract: The invention relates to an argyrodite thermoelectric material, the chemical formula of which is Ag8Sn(1-x)NbxSe6, x=0-0.05. The preparation method of the argyrodite thermoelectric material is characterized by, with simple substances being raw materials, carrying out material blending according to stoichiometric ratio of the chemical formula; after vacuum packaging, melting reaction quenching and thermal treatment quenching, grinding ingots into powders; and carrying out vacuum high-temperature hot-pressure sintering, and after slow cooling, obtaining a block material, which is the argyrodite thermoelectric material. Compared with the prior art, the high-performance thermoelectric material, which is low in heat conduction and high in thermoelectric performance, is prepared, and the method for preparing the thermoelectric material, which is high in density, high in mechanical strength and high in thermoelectric performance, is explored; the thermoelectric material has very low lattice thermal conductivity (0.2-0.4 W/m.K) in a whole-temperature range; when the temperature is 900 K, thermoelectric peak of the thermoelectric material reaches 1.2; when the temperature is 300-850 K, the average thermoelectric figure of merit zTave of the thermoelectric material is infinity-0.8; and the argyrodite thermoelectric material is a potential thermoelectric material.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The review covers the knowledge on photoremovable protecting groups and includes all relevant chromophores studied in the time period of 2000–2012 and the most relevant earlier works are discussed.
Abstract: The review covers the knowledge on photoremovable protecting groups and includes all relevant chromophores studied in the time period of 2000–2012; the most relevant earlier works are also discussed.

1,274 citations

Journal ArticleDOI
TL;DR: This review aims to comprehensively summarize the state-of-the-art strategies for the realization of high-performance thermoelectric materials and devices by establishing the links between synthesis, structural characteristics, properties, underlying chemistry and physics.
Abstract: The long-standing popularity of thermoelectric materials has contributed to the creation of various thermoelectric devices and stimulated the development of strategies to improve their thermoelectric performance. In this review, we aim to comprehensively summarize the state-of-the-art strategies for the realization of high-performance thermoelectric materials and devices by establishing the links between synthesis, structural characteristics, properties, underlying chemistry and physics, including structural design (point defects, dislocations, interfaces, inclusions, and pores), multidimensional design (quantum dots/wires, nanoparticles, nanowires, nano- or microbelts, few-layered nanosheets, nano- or microplates, thin films, single crystals, and polycrystalline bulks), and advanced device design (thermoelectric modules, miniature generators and coolers, and flexible thermoelectric generators). The outline of each strategy starts with a concise presentation of their fundamentals and carefully selected examples. In the end, we point out the controversies, challenges, and outlooks toward the future development of thermoelectric materials and devices. Overall, this review will serve to help materials scientists, chemists, and physicists, particularly students and young researchers, in selecting suitable strategies for the improvement of thermoelectrics and potentially other relevant energy conversion technologies.

951 citations

Journal ArticleDOI
TL;DR: This work demonstrates the effectiveness of dense lattice dislocations as a means of lowering κL, but also the importance of engineering both thermal and electronic transport simultaneously when designing high-performance thermoelectrics.
Abstract: Phonon scattering by nanostructures and point defects has become the primary strategy for minimizing the lattice thermal conductivity (κL ) in thermoelectric materials. However, these scatterers are only effective at the extremes of the phonon spectrum. Recently, it has been demonstrated that dislocations are effective at scattering the remaining mid-frequency phonons as well. In this work, by varying the concentration of Na in Pb0.97 Eu0.03 Te, it has been determined that the dominant microstructural features are point defects, lattice dislocations, and nanostructure interfaces. This study reveals that dense lattice dislocations (≈4 × 1012 cm-2 ) are particularly effective at reducing κL . When the dislocation concentration is maximized, one of the lowest κL values reported for PbTe is achieved. Furthermore, due to the band convergence of the alloyed 3% mol. EuTe the electronic performance is enhanced, and a high thermoelectric figure of merit, zT, of ≈2.2 is achieved. This work not only demonstrates the effectiveness of dense lattice dislocations as a means of lowering κL , but also the importance of engineering both thermal and electronic transport simultaneously when designing high-performance thermoelectrics.

394 citations

Journal ArticleDOI
TL;DR: In this article, a thermoelectric generator is used to directly convert heat into electricity, which holds great promise for tackling the ever-increasing energy sustainability issue in the future.
Abstract: Thermoelectric generators, capable of directly converting heat into electricity, hold great promise for tackling the ever-increasing energy sustainability issue. The thermoelectric energy conversio...

351 citations

Journal ArticleDOI
TL;DR: A combination of band convergence and interstitial defects, each of which enables a ≈150% increase in the peak zT, successfully accumulates the zT enhancements to be ≈300% (zT up to 1.6) without involving any toxic elements.
Abstract: Compared to commercially available p-type PbTe thermoelectrics, SnTe has a much bigger band offset between its two valence bands and a much higher lattice thermal conductivity, both of which limit its peak thermoelectric figure of merit, zT of only 0.4. Converging its valence bands or introducing resonant states is found to enhance the electronic properties, while nanostructuring or more recently introducing interstitial defects is found to reduce the lattice thermal conductivity. Even with an integration of some of the strategies above, existing efforts do not enable a peak zT exceeding 1.4 and usually involve Cd or Hg. In this work, a combination of band convergence and interstitial defects, each of which enables a ≈150% increase in the peak zT, successfully accumulates the zT enhancements to be ≈300% (zT up to 1.6) without involving any toxic elements. This opens new possibilities for further improvements and promotes SnTe as an environment-friendly solution for conventional p-PbTe thermoelectrics.

329 citations