scispace - formally typeset
Search or ask a question
Author

Wen Lu

Bio: Wen Lu is an academic researcher from Xidian University. The author has contributed to research in topics: Watermark & Visual perception. The author has an hindex of 9, co-authored 15 publications receiving 259 citations. Previous affiliations of Wen Lu include Hong Kong Polytechnic University.

Papers
More filters
Proceedings ArticleDOI
16 Jun 2019
TL;DR: The 3rd NTIRE challenge on single-image super-resolution (restoration of rich details in a low-resolution image) is reviewed with a focus on proposed solutions and results and the state-of-the-art in real-world single image super- resolution.
Abstract: This paper reviewed the 3rd NTIRE challenge on single-image super-resolution (restoration of rich details in a low-resolution image) with a focus on proposed solutions and results. The challenge had 1 track, which was aimed at the real-world single image super-resolution problem with an unknown scaling factor. Participants were mapping low-resolution images captured by a DSLR camera with a shorter focal length to their high-resolution images captured at a longer focal length. With this challenge, we introduced a novel real-world super-resolution dataset (RealSR). The track had 403 registered participants, and 36 teams competed in the final testing phase. They gauge the state-of-the-art in real-world single image super-resolution.

118 citations

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors proposed a gated peripheral-foveal convolutional neural network (GPFCN) to learn fine-grained details for image aesthetic assessment.
Abstract: Learning fine-grained details is a key issue in image aesthetic assessment. Most of the previous methods extract the fine-grained details via random cropping strategy, which may undermine the integrity of semantic information. Extensive studies show that humans perceive fine-grained details with a mixture of foveal vision and peripheral vision. Fovea has the highest possible visual acuity and is responsible for seeing the details. The peripheral vision is used for perceiving the broad spatial scene and selecting the attended regions for the fovea. Inspired by these observations, we propose a gated peripheral-foveal convolutional neural network. It is a dedicated double-subnet neural network (i.e., a peripheral subnet and a foveal subnet). The former aims to mimic the functions of peripheral vision to encode the holistic information and provide the attended regions. The latter aims to extract fine-grained features on these key regions. Considering that the peripheral vision and foveal vision play different roles in processing different visual stimuli, we further employ a gated information fusion network to weigh their contributions. The weights are determined through the fully connected layers followed by a sigmoid function. We conduct comprehensive experiments on the standard Aesthetic Visual Analysis (AVA) dataset and Photo.net dataset for unified aesthetic prediction tasks: 1) aesthetic quality classification; 2) aesthetic score regression; and 3) aesthetic score distribution prediction. The experimental results demonstrate the effectiveness of the proposed method.

51 citations

Posted Content
TL;DR: A gated peripheral-foveal convolutional neural network that aims to mimic the functions of peripheral vision to encode the holistic information and provide the attended regions for the fovea and a gated information fusion network to weigh their contributions.
Abstract: Learning fine-grained details is a key issue in image aesthetic assessment. Most of the previous methods extract the fine-grained details via random cropping strategy, which may undermine the integrity of semantic information. Extensive studies show that humans perceive fine-grained details with a mixture of foveal vision and peripheral vision. Fovea has the highest possible visual acuity and is responsible for seeing the details. The peripheral vision is used for perceiving the broad spatial scene and selecting the attended regions for the fovea. Inspired by these observations, we propose a Gated Peripheral-Foveal Convolutional Neural Network (GPF-CNN). It is a dedicated double-subnet neural network, i.e. a peripheral subnet and a foveal subnet. The former aims to mimic the functions of peripheral vision to encode the holistic information and provide the attended regions. The latter aims to extract fine-grained features on these key regions. Considering that the peripheral vision and foveal vision play different roles in processing different visual stimuli, we further employ a gated information fusion (GIF) network to weight their contributions. The weights are determined through the fully connected layers followed by a sigmoid function. We conduct comprehensive experiments on the standard AVA and this http URL datasets for unified aesthetic prediction tasks: (i) aesthetic quality classification; (ii) aesthetic score regression; and (iii) aesthetic score distribution prediction. The experimental results demonstrate the effectiveness of the proposed method.

41 citations

Journal ArticleDOI
TL;DR: A purposeful and interpretable detail-fidelity attention network to progressively process these smoothes and details in a divide-and-conquer manner, which is a novel and specific prospect of image super-resolution for the purpose of improving detail fidelity.
Abstract: Benefiting from the strong capabilities of deep CNNs for feature representation and nonlinear mapping, deep-learning-based methods have achieved excellent performance in single image super-resolution. However, most existing SR methods depend on the high capacity of networks which is initially designed for visual recognition, and rarely consider the initial intention of super-resolution for detail fidelity. Aiming at pursuing this intention, there are two challenging issues to be solved: (1) learning appropriate operators which is adaptive to the diverse characteristics of smoothes and details; (2) improving the ability of model to preserve the low-frequency smoothes and reconstruct the high-frequency details. To solve them, we propose a purposeful and interpretable detail-fidelity attention network to progressively process these smoothes and details in divide-and-conquer manner, which is a novel and specific prospect of image super-resolution for the purpose on improving the detail fidelity, instead of blindly designing or employing the deep CNNs architectures for merely feature representation in local receptive fields. Particularly, we propose a Hessian filtering for interpretable feature representation which is high-profile for detail inference, a dilated encoder-decoder and a distribution alignment cell to improve the inferred Hessian features in morphological manner and statistical manner respectively. Extensive experiments demonstrate that the proposed methods achieve superior performances over the state-of-the-art methods quantitatively and qualitatively. Code is available at this https URL.

28 citations


Cited by
More filters
Patent
31 Aug 2011
TL;DR: In this article, a method for modifying an image is presented, which consists of displaying an image, the image comprising a portion of an object; determining if an edge of the object is in a location within the portion; and detecting movement in a member direction, of an operating member with respect to the edge.
Abstract: A method is provided for modifying an image. The method comprises displaying an image, the image comprising a portion of an object; and determining if an edge of the object is in a location within the portion. The method further comprises detecting movement, in a member direction, of an operating member with respect to the edge. The method still further comprises moving, if the edge is not in the location, the object in an object direction corresponding to the detected movement; and modifying, if the edge is in the location, the image in response to the detected movement, the modified image comprising the edge in the location.

434 citations

Book ChapterDOI
23 Aug 2020
TL;DR: MIRNet as mentioned in this paper proposes a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting mult-scale features, (b) information exchange across the multiresolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention-based multiscale feature aggregation.
Abstract: With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography and medical imaging. Recently, convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task. Existing CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatially precise but contextually less robust results are achieved, while in the latter case, semantically reliable but spatially less accurate outputs are generated. In this paper, we present an architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network and receiving strong contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention based multi-scale feature aggregation. In a nutshell, our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on five real image benchmark datasets demonstrate that our method, named as MIRNet, achieves state-of-the-art results for image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNet.

357 citations

Proceedings ArticleDOI
16 Jun 2019
TL;DR: It is found that the NTIRE 2019 challenges push the state-of-the-art in video deblurring and super-resolution, reaching compelling performance on the newly proposed REDS dataset.
Abstract: This paper introduces a novel large dataset for video deblurring, video super-resolution and studies the state-of-the-art as emerged from the NTIRE 2019 video restoration challenges. The video deblurring and video super-resolution challenges are each the first challenge of its kind, with 4 competitions, hundreds of participants and tens of proposed solutions. Our newly collected REalistic and Diverse Scenes dataset (REDS) was employed by the challenges. In our study, we compare the solutions from the challenges to a set of representative methods from the literature and evaluate them on our proposed REDS dataset. We find that the NTIRE 2019 challenges push the state-of-the-art in video deblurring and super-resolution, reaching compelling performance on our newly proposed REDS dataset.

328 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: Li et al. as mentioned in this paper proposed a Laplacian pyramid based kernel prediction network (LP-KPN), which efficiently learns per-pixel kernels to recover the HR image, which achieved better visual quality with sharper edges and finer textures on real-world scenes.
Abstract: Most of the existing learning-based single image super-resolution (SISR) methods are trained and evaluated on simulated datasets, where the low-resolution (LR) images are generated by applying a simple and uniform degradation (i.e., bicubic downsampling) to their high-resolution (HR) counterparts. However, the degradations in real-world LR images are far more complicated. As a consequence, the SISR models trained on simulated data become less effective when applied to practical scenarios. In this paper, we build a real-world super-resolution (RealSR) dataset where paired LR-HR images on the same scene are captured by adjusting the focal length of a digital camera. An image registration algorithm is developed to progressively align the image pairs at different resolutions. Considering that the degradation kernels are naturally non-uniform in our dataset, we present a Laplacian pyramid based kernel prediction network (LP-KPN), which efficiently learns per-pixel kernels to recover the HR image. Our extensive experiments demonstrate that SISR models trained on our RealSR dataset deliver better visual quality with sharper edges and finer textures on real-world scenes than those trained on simulated datasets. Though our RealSR dataset is built by using only two cameras (Canon 5D3 and Nikon D810), the trained model generalizes well to other camera devices such as Sony a7II and mobile phones.

318 citations

Journal ArticleDOI
TL;DR: Deep convolutional networks–based super-resolution is a fast-growing field with numerous practical applications and this exposition extensively compare more than 30 state-of-the-art super-resolves.
Abstract: Deep convolutional networks–based super-resolution is a fast-growing field with numerous practical applications. In this exposition, we extensively compare more than 30 state-of-the-art super-resolution Convolutional Neural Networks (CNNs) over three classical and three recently introduced challenging datasets to benchmark single image super-resolution. We introduce a taxonomy for deep learning–based super-resolution networks that groups existing methods into nine categories including linear, residual, multi-branch, recursive, progressive, attention-based, and adversarial designs. We also provide comparisons between the models in terms of network complexity, memory footprint, model input and output, learning details, the type of network losses, and important architectural differences (e.g., depth, skip-connections, filters). The extensive evaluation performed shows the consistent and rapid growth in the accuracy in the past few years along with a corresponding boost in model complexity and the availability of large-scale datasets. It is also observed that the pioneering methods identified as the benchmarks have been significantly outperformed by the current contenders. Despite the progress in recent years, we identify several shortcomings of existing techniques and provide future research directions towards the solution of these open problems. Datasets and codes for evaluation are publicly available at https://github.com/saeed-anwar/SRsurvey.

162 citations