scispace - formally typeset
Search or ask a question
Author

Wen-Sung Lai

Bio: Wen-Sung Lai is an academic researcher from National Taiwan University. The author has contributed to research in topics: Hippocampus & Schizophrenia. The author has an hindex of 20, co-authored 43 publications receiving 1911 citations. Previous affiliations of Wen-Sung Lai include Rockefeller University & National Health Research Institutes.

Papers
More filters
Journal ArticleDOI
TL;DR: Evidence is provided that the abnormal miRNA biogenesis emerges because of haploinsufficiency of the Dgcr8 gene, which encodes an RNA-binding moiety of the 'microprocessor' complex and contributes to the behavioral and neuronal deficits associated with the 22q11.2 microdeletion.
Abstract: Individuals with 22q11.2 microdeletions show behavioral and cognitive deficits and are at high risk of developing schizophrenia. We analyzed an engineered mouse strain carrying a chromosomal deficiency spanning a segment syntenic to the human 22q11.2 locus. We uncovered a previously unknown alteration in the biogenesis of microRNAs (miRNAs) and identified a subset of brain miRNAs affected by the microdeletion. We provide evidence that the abnormal miRNA biogenesis emerges because of haploinsufficiency of the Dgcr8 gene, which encodes an RNA-binding moiety of the 'microprocessor' complex and contributes to the behavioral and neuronal deficits associated with the 22q11.2 microdeletion.

569 citations

Journal ArticleDOI
TL;DR: There is an unexpected connection between impaired palmitate modification of neuronal proteins and the psychiatric phenotypes associated with microdeletions of chromosome 22q11 and SNP rs175174 shows differences in transmission distortion between sexes in individuals with schizophrenia.
Abstract: Using a relatively dense genetic map of 72 single-nucleotide polymorphisms (SNPs) distributed across the entire 1.5-Mb locus on chromosome 22q11 associated with susceptibilit to schizophrenia1,2, we previously identified two subregions that were consistently associated with the disease3,4. In the distal subregion, we detected an association signal with five neighboring SNPs distributed over a haplotypic block of 80 kb encompassing six known genes4. One of these five SNPs, rs175174, had the strongest association of all 72 SNPs that we tested. Here we show that rs175174 regulates the level of the fully functional transcript by modulating the retention of intron 4 of the gene ZDHHC8, which encodes a putative transmembrane palmitoyltransferase. Zdhhc8-knockout mice had a sexually dimorphic deficit in prepulse inhibition, a gene dosage–dependent decrease in exploratory activity in a new environment and a decreased sensitivity to the locomotor stimulatory effects of the psychomimetic drug dizocilpine (MK801). SNP rs175174 shows differences in transmission distortion between sexes in individuals with schizophrenia. Our results indicate that there is an unexpected connection between impaired palmitate modification of neuronal proteins and the psychiatric phenotypes associated with microdeletions of chromosome 22q11.

309 citations

Journal ArticleDOI
TL;DR: Transcriptional profiling and pharmacological manipulations identified a transcriptional and behavioral interaction between the Prodh and Comt genes that is likely to represent a homeostatic response to enhanced dopaminergic signaling in the frontal cortex.
Abstract: Microdeletions of 22q11.2 represent one of the highest known genetic risk factors for schizophrenia. It is likely that more than one gene contributes to the marked risk associated with this locus. Two of the candidate risk genes encode the enzymes proline dehydrogenase (PRODH) and catechol-O-methyltransferase (COMT), which modulate the levels of a putative neuromodulator (L-proline) and the neurotransmitter dopamine, respectively. Mice that model the state of PRODH deficiency observed in humans with schizophrenia show increased neurotransmitter release at glutamatergic synapses as well as deficits in associative learning and response to psychomimetic drugs. Transcriptional profiling and pharmacological manipulations identified a transcriptional and behavioral interaction between the Prodh and Comt genes that is likely to represent a homeostatic response to enhanced dopaminergic signaling in the frontal cortex. This interaction modulates a number of schizophrenia-related phenotypes, providing a framework for understanding the high disease risk associated with this locus, the expression of the phenotype, or both.

247 citations

Journal ArticleDOI
TL;DR: Behavioral analysis indicated that Akt1-mutant mice have normal acquisition of a PFC-dependent cognitive task but abnormal working memory retention under neurochemical challenge of three distinct neurotransmitter systems, which creates a context permissive for gene–gene and gene–environment interactions that modulate PFC functioning and contribute to the disease risk associated with this locus.
Abstract: There is accumulating evidence that AKT signaling plays a role in the pathogenesis of schizophrenia. We asked whether Akt1 deficiency in mice results in structural and functional abnormalities in prefrontal cortex (PFC). Exploratory transcriptional profiling revealed concerted alterations in the expression of PFC genes controlling synaptic function, neuronal development, myelination, and actin polymerization, and follow-up ultrastructural analysis identified consistent changes in the dendritic architecture of pyramidal neurons. Behavioral analysis indicated that Akt1-mutant mice have normal acquisition of a PFC-dependent cognitive task but abnormal working memory retention under neurochemical challenge of three distinct neurotransmitter systems. Thus, Akt1 deficiency creates a context permissive for gene-gene and gene-environment interactions that modulate PFC functioning and contribute to the disease risk associated with this locus, the severity of the clinical syndrome, or both.

143 citations

Journal ArticleDOI
TL;DR: These results are the first to use a rodent model to characterize neural circuits involved in the recognition of equally well known individuals and the corresponding emotional responses to them.
Abstract: The ability to recognize individuals is essential for many aspects of social interaction and social organization, yet we know relatively little about the neural mechanisms underlying this ability. Most laboratory studies of individual recognition in rodents have studied differential responses to familiar versus unfamiliar individuals rather than differential responses to equally well known individuals having different significance for the subject. In experiment 1, we use a new method for studying true individual recognition in which male hamsters first had different experiences with two stimulus males (exposures to one male across a wire-mesh barrier and fights with another male). One day later, losers of fights were tested in a Y-maze for reactions to one of the two familiar males. Subjects tested with the familiar winner avoided this stimulus male, but subjects tested with the familiar, neutral male were attracted to him. Immunohistochemistry for c-Fos and Egr-1 implicate several areas of the brain in individual recognition, particularly the anterior piriform cortex, the CA1 and CA3 regions of anterior dorsal hippocampus, anterior and posterior dentate gyrus, and perirhinal cortex. In experiment 2, temporary inactivation of the CA1 region of anterior dorsal hippocampus by microinfusion of lidocaine eliminated the avoidance of the familiar winner, but a saline control injection had no effect. These results are the first to use a rodent model to characterize neural circuits involved in the recognition of equally well known individuals and the corresponding emotional responses to them.

101 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

Journal ArticleDOI
TL;DR: D dopamine receptor classification, their basic structural and genetic organization, their distribution and functions in the brain and the periphery, and their regulation and signal transduction mechanisms are discussed.
Abstract: G protein-coupled dopamine receptors (D1, D2, D3, D4, and D5) mediate all of the physiological functions of the catecholaminergic neurotransmitter dopamine, ranging from voluntary movement and reward to hormonal regulation and hypertension. Pharmacological agents targeting dopaminergic neurotransmission have been clinically used in the management of several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, bipolar disorder, Huntington's disease, attention deficit hyperactivity disorder (ADHD(1)), and Tourette's syndrome. Numerous advances have occurred in understanding the general structural, biochemical, and functional properties of dopamine receptors that have led to the development of multiple pharmacologically active compounds that directly target dopamine receptors, such as antiparkinson drugs and antipsychotics. Recent progress in understanding the complex biology of dopamine receptor-related signal transduction mechanisms has revealed that, in addition to their primary action on cAMP-mediated signaling, dopamine receptors can act through diverse signaling mechanisms that involve alternative G protein coupling or through G protein-independent mechanisms via interactions with ion channels or proteins that are characteristically implicated in receptor desensitization, such as β-arrestins. One of the future directions in managing dopamine-related pathologic conditions may involve a transition from the approaches that directly affect receptor function to a precise targeting of postreceptor intracellular signaling modalities either directly or through ligand-biased signaling pharmacology. In this comprehensive review, we discuss dopamine receptor classification, their basic structural and genetic organization, their distribution and functions in the brain and the periphery, and their regulation and signal transduction mechanisms. In addition, we discuss the abnormalities of dopamine receptor expression, function, and signaling that are documented in human disorders and the current pharmacology and emerging trends in the development of novel therapeutic agents that act at dopamine receptors and/or on related signaling events.

2,259 citations

Journal ArticleDOI
10 Apr 2014-Nature
TL;DR: A brain-wide, cellular-level, mesoscale connectome for the mouse, using enhanced green fluorescent protein-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain.
Abstract: Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.

2,051 citations

Journal ArticleDOI
19 Nov 2015
TL;DR: The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease as mentioned in this paper.
Abstract: 22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population.

1,850 citations