scispace - formally typeset
Search or ask a question
Author

Wendi Heinzelman

Bio: Wendi Heinzelman is an academic researcher from University of Rochester. The author has contributed to research in topics: Wireless sensor network & Network packet. The author has an hindex of 48, co-authored 200 publications receiving 21673 citations. Previous affiliations of Wendi Heinzelman include Massachusetts Institute of Technology & Texas Instruments.


Papers
More filters
Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations

Dissertation
01 Jan 2000
TL;DR: This dissertation supports the claim that application-specific protocol architectures achieve the energy and latency efficiency and error robustness needed for wireless networks by developing two systems.
Abstract: In recent years, advances in energy-efficient design and wireless technologies have enabled exciting new applications for wireless devices. These applications span a wide range, including real-time and streaming video and audio delivery, remote monitoring using networked microsensors, personal medical monitoring, and home networking of everyday appliances. While these applications require high performance from the network, they suffer from resource constraints that do not appear in more traditional wired computing environments. In particular, wireless spectrum is scarce, often limiting the bandwidth available to applications and making the channel error-prone, and the nodes are battery-operated, often limiting available energy. My thesis is that this harsh environment with severe resource constraints requires an application-specific protocol architecture, rather than the traditional layered approach, to obtain the best possible performance. This dissertation supports this claim using detailed case studies on microsensor networks and wireless video delivery. The first study develops LEACH (Low-Energy Adaptive Clustering Hierarchy), an architecture for remote microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. This approach improves system lifetime by an order of magnitude compared to general-purpose approaches when the node energy is limited. The second study develops an unequal error protection scheme for MPEG-4 compressed video delivery that adapts the level of protection applied to portions of a packet to the degree of importance of the corresponding bits. This approach obtains better application-perceived performance than current approaches for the same amount of transmission bandwidth. These two systems show that application-specific protocol architectures achieve the energy and latency efficiency and error robustness needed for wireless networks. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

1,253 citations

Journal ArticleDOI
TL;DR: A family of adaptive protocols that efficiently disseminate information among sensors in an energy-constrained wireless sensor network, called SPIN (Sensor Protocols for Information via Negotiation), that perform close to the theoretical optimum in both point-to-point and broadcast networks.
Abstract: In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminate information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data negotiations to eliminate the transmission of redundant data throughout the network. In addition, SPIN nodes can base their communication decisions both upon application-specific knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to efficiently distribute data given a limited energy supply. We simulate and analyze the performance of four specific SPIN protocols: SPIN-PP and SPIN-EC, which are optimized for a point-to-point network, and SPIN-BC and SPIN-RL, which are optimized for a broadcast network. Comparing the SPIN protocols to other possible approaches, we find that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches in a point-to-point network and 80% more data for a given amount of energy in a broadcast network. We also find that, in terms of dissemination rate and energy usage, the SPIN protocols perform close to the theoretical optimum in both point-to-point and broadcast networks.

1,185 citations

Journal ArticleDOI
TL;DR: This taxonomy will aid in defining appropriate communication infrastructures for different sensor network application sub-spaces, allowing network designers to choose the protocol architecture that best matches the goals of their application.
Abstract: In future smart environments, wireless sensor networks will play a key role in sensing, collecting, and disseminating information about environmental phenomena. Sensing applications represent a new paradigm for network operation, one that has different goals from more traditional wireless networks. This paper examines this emerging field to classify wireless micro-sensor networks according to different communication functions, data delivery models, and network dynamics. This taxonomy will aid in defining appropriate communication infrastructures for different sensor network application sub-spaces, allowing network designers to choose the protocol architecture that best matches the goals of their application. In addition, this taxonomy will enable new sensor network models to be defined for use in further research in this area.

1,077 citations

Proceedings ArticleDOI
04 Apr 2005
TL;DR: This work proposes an unequal clustering size (UCS) model for network organization, which can lead to more uniform energy dissipation among the cluster head nodes, thus increasing network lifetime and expands this approach to homogeneous sensor networks.
Abstract: Organizing wireless sensor networks into clusters enables the efficient utilization of the limited energy resources of the deployed sensor nodes However, the problem of unbalanced energy consumption exists, and it is tightly bound to the role and to the location of a particular node in the network If the network is organized into heterogeneous clusters, where some more powerful nodes take on the cluster head role to control network operation, it is important to ensure that energy dissipation of these cluster head nodes is balanced Oftentimes the network is organized into clusters of equal size, but such equal clustering results in an unequal load on the cluster head nodes Instead, we propose an unequal clustering size (UCS) model for network organization, which can lead to more uniform energy dissipation among the cluster head nodes, thus increasing network lifetime Also, we expand this approach to homogeneous sensor networks and show that UCS can lead to more uniform energy dissipation in a homogeneous network as well

566 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a cloud centric vision for worldwide implementation of Internet of Things (IoT) and present a Cloud implementation using Aneka, which is based on interaction of private and public Clouds, and conclude their IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.
Abstract: Ubiquitous sensing enabled by Wireless Sensor Network (WSN) technologies cuts across many areas of modern day living. This offers the ability to measure, infer and understand environmental indicators, from delicate ecologies and natural resources to urban environments. The proliferation of these devices in a communicating-actuating network creates the Internet of Things (IoT), wherein sensors and actuators blend seamlessly with the environment around us, and the information is shared across platforms in order to develop a common operating picture (COP). Fueled by the recent adaptation of a variety of enabling wireless technologies such as RFID tags and embedded sensor and actuator nodes, the IoT has stepped out of its infancy and is the next revolutionary technology in transforming the Internet into a fully integrated Future Internet. As we move from www (static pages web) to web2 (social networking web) to web3 (ubiquitous computing web), the need for data-on-demand using sophisticated intuitive queries increases significantly. This paper presents a Cloud centric vision for worldwide implementation of Internet of Things. The key enabling technologies and application domains that are likely to drive IoT research in the near future are discussed. A Cloud implementation using Aneka, which is based on interaction of private and public Clouds is presented. We conclude our IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.

9,593 citations

Journal ArticleDOI
TL;DR: It is proved that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks.
Abstract: Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. We propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed approach does not make any assumptions about the presence of infrastructure or about node capabilities, other than the availability of multiple power levels in sensor nodes. We present a protocol, HEED (Hybrid Energy-Efficient Distributed clustering), that periodically selects cluster heads according to a hybrid of the node residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED terminates in O(1) iterations, incurs low message overhead, and achieves fairly uniform cluster head distribution across the network. We prove that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks. Simulation results demonstrate that our proposed approach is effective in prolonging the network lifetime and supporting scalable data aggregation.

4,889 citations