scispace - formally typeset
Search or ask a question
Author

Wendy Sessions

Bio: Wendy Sessions is an academic researcher from Centers for Disease Control and Prevention. The author has contributed to research in topics: Influenza vaccine & Vaccination. The author has an hindex of 16, co-authored 25 publications receiving 3593 citations. Previous affiliations of Wendy Sessions include National Center for Immunization and Respiratory Diseases.

Papers
More filters
Journal ArticleDOI
10 Jul 2009-Science
TL;DR: The lack of similarity between the 2009 A(H1N1) virus and its nearest relatives indicates that its gene segments have been circulating undetected for an extended period as mentioned in this paper.
Abstract: Since its identification in April 2009, an A(H1N1) virus containing a unique combination of gene segments from both North American and Eurasian swine lineages has continued to circulate in humans. The lack of similarity between the 2009 A(H1N1) virus and its nearest relatives indicates that its gene segments have been circulating undetected for an extended period. Its low genetic diversity suggests that the introduction into humans was a single event or multiple events of similar viruses. Molecular markers predictive of adaptation to humans are not currently present in 2009 A(H1N1) viruses, suggesting that previously unrecognized molecular determinants could be responsible for the transmission among humans. Antigenically the viruses are homogeneous and similar to North American swine A(H1N1) viruses but distinct from seasonal human A(H1N1).

2,393 citations

Journal ArticleDOI
TL;DR: Overall influenza activity was moderate this season, with a lower percentage of outpatient visits for influenza-like illness (ILI), lower hospitalization rates, and a higher percentage of deaths attributed to pneumonia and influenza (P&I) compared with the preceding three seasons.
Abstract: During the 2015-16 influenza season (October 4, 2015-May 21, 2016) in the United States, influenza activity* was lower and peaked later compared with the previous three seasons (2012-13, 2013-14, and 2014-15). Activity remained low from October 2015 until late December 2015 and peaked in mid-March 2016. During the most recent 18 influenza seasons (including this season), only two other seasons have peaked in March (2011-12 and 2005-06). Overall influenza activity was moderate this season, with a lower percentage of outpatient visits for influenza-like illness (ILI),(†) lower hospitalization rates, and a lower percentage of deaths attributed to pneumonia and influenza (P&I) compared with the preceding three seasons. Influenza A(H1N1)pdm09 viruses predominated overall, but influenza A(H3N2) viruses were more commonly identified from October to early December, and influenza B viruses were more commonly identified from mid-April through mid-May. The majority of viruses characterized this season were antigenically similar to the reference viruses representing the recommended components of the 2015-16 Northern Hemisphere influenza vaccine (1). This report summarizes influenza activity in the United States during the 2015-16 influenza season (October 4, 2015-May 21, 2016)(§) and reports the vaccine virus components recommended for the 2016-17 Northern Hemisphere influenza vaccines.

283 citations

Journal ArticleDOI
TL;DR: The COVID-19 pandemic and subsequent implementation of nonpharmaceutical interventions (e.g., cessation of global travel, mask use, physical distancing, and staying home) reduced transmission of some viral respiratory pathogens as discussed by the authors.
Abstract: The COVID-19 pandemic and subsequent implementation of nonpharmaceutical interventions (e.g., cessation of global travel, mask use, physical distancing, and staying home) reduced transmission of some viral respiratory pathogens (1). In the United States, influenza activity decreased in March 2020, was historically low through the summer of 2020 (2), and remained low during October 2020-May 2021 (<0.4% of respiratory specimens with positive test results for each week of the season). Circulation of other respiratory pathogens, including respiratory syncytial virus (RSV), common human coronaviruses (HCoVs) types OC43, NL63, 229E, and HKU1, and parainfluenza viruses (PIVs) types 1-4 also decreased in early 2020 and did not increase until spring 2021. Human metapneumovirus (HMPV) circulation decreased in March 2020 and remained low through May 2021. Respiratory adenovirus (RAdV) circulated at lower levels throughout 2020 and as of early May 2021. Rhinovirus and enterovirus (RV/EV) circulation decreased in March 2020, remained low until May 2020, and then increased to near prepandemic seasonal levels. Circulation of respiratory viruses could resume at prepandemic levels after COVID-19 mitigation practices become less stringent. Clinicians should be aware of increases in some respiratory virus activity and remain vigilant for off-season increases. In addition to the use of everyday preventive actions, fall influenza vaccination campaigns are an important component of prevention as COVID-19 mitigation measures are relaxed and schools and workplaces resume in-person activities.

234 citations

Journal Article
TL;DR: An initial estimate of seasonal influenza vaccine effectiveness at preventing laboratory-confirmed influenza virus infection associated with medically attended ARI based on data from 2,321 children and adults enrolled in the U.S. Influenza Vaccine Effectiveness Network during November 10-January 2, 2015 was 23% (95% confidence interval [CI] = 8%-36%).
Abstract: In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months. Each season since 2004-05, CDC has estimated the effectiveness of seasonal influenza vaccine in preventing medically attended acute respiratory illness (ARI) associated with laboratory-confirmed influenza. This season, early estimates of influenza vaccine effectiveness are possible because of widespread, early circulation of influenza viruses. By January 3, 2015, 46 states were experiencing widespread flu activity, with predominance of influenza A (H3N2) viruses. This report presents an initial estimate of seasonal influenza vaccine effectiveness at preventing laboratory-confirmed influenza virus infection associated with medically attended ARI based on data from 2,321 children and adults enrolled in the U.S. Influenza Vaccine Effectiveness Network (Flu VE) during November 10, 2014-January 2, 2015. During this period, overall vaccine effectiveness (VE) (adjusted for study site, age, sex, race/ethnicity, self-rated health, and days from illness onset to enrollment) against laboratory-confirmed influenza associated with medically attended ARI was 23% (95% confidence interval [CI] = 8%-36%). Most influenza infections were due to A (H3N2) viruses. This interim VE estimate is relatively low compared with previous seasons when circulating viruses and vaccine viruses were well-matched and likely reflects the fact that more than two-thirds of circulating A (H3N2) viruses are antigenically and genetically different (drifted) from the A (H3N2) vaccine component of 2014-15 Northern Hemisphere seasonal influenza vaccines. These early, low VE estimates underscore the need for ongoing influenza prevention and treatment measures. CDC continues to recommend influenza vaccination because the vaccine can still prevent some infections with the currently circulating A (H3N2) viruses as well as other viruses that might circulate later in the season, including influenza B viruses. Even when VE is reduced, vaccination still prevents some illness and serious influenza-related complications, including thousands of hospitalizations and deaths. Persons aged ≥6 months who have not yet been vaccinated this season should be vaccinated, including persons who might already have been ill with influenza this season.

194 citations

Journal ArticleDOI
TL;DR: Early VE estimates underscore the need for ongoing influenza prevention and treatment measures and CDC continues to recommend influenza vaccination because the vaccine can still prevent some infections with currently circulating influenza viruses, which are expected to continue circulating for several weeks.
Abstract: In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months (1). During each influenza season since 2004-05, CDC has estimated the effectiveness of seasonal influenza vaccine to prevent laboratory-confirmed influenza associated with medically attended acute respiratory illness (ARI). This report uses data from 4,562 children and adults enrolled in the U.S. Influenza Vaccine Effectiveness Network (U.S. Flu VE Network) during November 2, 2017-February 3, 2018. During this period, overall adjusted vaccine effectiveness (VE) against influenza A and influenza B virus infection associated with medically attended ARI was 36% (95% confidence interval [CI] = 27%-44%). Most (69%) influenza infections were caused by A(H3N2) viruses. VE was estimated to be 25% (CI = 13% to 36%) against illness caused by influenza A(H3N2) virus, 67% (CI = 54%-76%) against A(H1N1)pdm09 viruses, and 42% (CI = 25%-56%) against influenza B viruses. These early VE estimates underscore the need for ongoing influenza prevention and treatment measures. CDC continues to recommend influenza vaccination because the vaccine can still prevent some infections with currently circulating influenza viruses, which are expected to continue circulating for several weeks. Even with current vaccine effectiveness estimates, vaccination will still prevent influenza illness, including thousands of hospitalizations and deaths. Persons aged ≥6 months who have not yet been vaccinated this season should be vaccinated.

130 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: Wild aquatic bird populations have long been considered the natural reservoir for influenza A viruses with virus transmission from these birds seeding other avian and mammalian hosts, but recent studies in bats have suggested other reservoir species may also exist.

4,155 citations

Journal ArticleDOI
25 Jun 2009-Nature
TL;DR: It is shown that the new swine-origin influenza A (H1N1) virus emerged in Mexico and the United States was derived from several viruses circulating in swine, and that the initial transmission to humans occurred several months before recognition of the outbreak.
Abstract: In March and early April 2009, a new swine-origin influenza A (H1N1) virus (S-OIV) emerged in Mexico and the United States. During the first few weeks of surveillance, the virus spread worldwide to 30 countries (as of May 11) by human-to-human transmission, causing the World Health Organization to raise its pandemic alert to level 5 of 6. This virus has the potential to develop into the first influenza pandemic of the twenty-first century. Here we use evolutionary analysis to estimate the timescale of the origins and the early development of the S-OIV epidemic. We show that it was derived from several viruses circulating in swine, and that the initial transmission to humans occurred several months before recognition of the outbreak. A phylogenetic estimate of the gaps in genetic surveillance indicates a long period of unsampled ancestry before the S-OIV outbreak, suggesting that the reassortment of swine lineages may have occurred years before emergence in humans, and that the multiple genetic ancestry of S-OIV is not indicative of an artificial origin. Furthermore, the unsampled history of the epidemic means that the nature and location of the genetically closest swine viruses reveal little about the immediate origin of the epidemic, despite the fact that we included a panel of closely related and previously unpublished swine influenza isolates. Our results highlight the need for systematic surveillance of influenza in swine, and provide evidence that the mixing of new genetic elements in swine can result in the emergence of viruses with pandemic potential in humans.

2,023 citations

Journal Article
TL;DR: This report updates the 2008 recommendations by CDC's Advisory Committee on Immunization Practices regarding the use of influenza vaccine for the prevention and control of seasonal influenza and includes a summary of safety data for U.S. licensed influenza vaccines.
Abstract: This report updates the 2009 recommendations by CDC's Advisory Committee on Immunization Practices (ACIP) regarding the use of influenza vaccine for the prevention and control of influenza (CDC. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2009;58[No. RR-8] and CDC. Use of influenza A (H1N1) 2009 monovalent vaccine---recommendations of the Advisory Committee on Immunization Practices [ACIP], 2009. MMWR 2009;58:[No. RR-10]). The 2010 influenza recommendations include new and updated information. Highlights of the 2010 recommendations include 1) a recommendation that annual vaccination be administered to all persons aged >or=6 months for the 2010-11 influenza season; 2) a recommendation that children aged 6 months--8 years whose vaccination status is unknown or who have never received seasonal influenza vaccine before (or who received seasonal vaccine for the first time in 2009-10 but received only 1 dose in their first year of vaccination) as well as children who did not receive at least 1 dose of an influenza A (H1N1) 2009 monovalent vaccine regardless of previous influenza vaccine history should receive 2 doses of a 2010-11 seasonal influenza vaccine (minimum interval: 4 weeks) during the 2010--11 season; 3) a recommendation that vaccines containing the 2010-11 trivalent vaccine virus strains A/California/7/2009 (H1N1)-like (the same strain as was used for 2009 H1N1 monovalent vaccines), A/Perth/16/2009 (H3N2)-like, and B/Brisbane/60/2008-like antigens be used; 4) information about Fluzone High-Dose, a newly approved vaccine for persons aged >or=65 years; and 5) information about other standard-dose newly approved influenza vaccines and previously approved vaccines with expanded age indications. Vaccination efforts should begin as soon as the 2010-11 seasonal influenza vaccine is available and continue through the influenza season. These recommendations also include a summary of safety data for U.S.-licensed influenza vaccines. These recommendations and other information are available at CDC's influenza website (http://www.cdc.gov/flu); any updates or supplements that might be required during the 2010-11 influenza season also will be available at this website. Recommendations for influenza diagnosis and antiviral use will be published before the start of the 2010-11 influenza season. Vaccination and health-care providers should be alert to announcements of recommendation updates and should check the CDC influenza website periodically for additional information.

1,659 citations

Journal ArticleDOI
TL;DR: Data suggest that the use of antiviral drugs was beneficial in hospitalized patients, especially when such therapy was initiated early, and patients seemed to benefit from antiviral therapy.
Abstract: BACKGROUND During the spring of 2009, a pandemic influenza A (H1N1) virus emerged and spread globally. We describe the clinical characteristics of patients who were hospitalized with 2009 H1N1 influenza in the United States from April 2009 to mid-June 2009. METHODS Using medical charts, we collected data on 272 patients who were hospitalized for at least 24 hours for influenza-like illness and who tested positive for the 2009 H1N1 virus with the use of a real-time reverse-transcriptase-polymerase-chain-reaction assay. RESULTS Of the 272 patients we studied, 25% were admitted to an intensive care unit and 7% died. Forty-five percent of the patients were children under the age of 18 years, and 5% were 65 years of age or older. Seventy-three percent of the patients had at least one underlying medical condition; these conditions included asthma; diabetes; heart, lung, and neurologic diseases; and pregnancy. Of the 249 patients who underwent chest radiography on admission, 100 (40%) had findings consistent with pneumonia. Of the 268 patients for whom data were available regarding the use of antiviral drugs, such therapy was initiated in 200 patients (75%) at a median of 3 days after the onset of illness. Data suggest that the use of antiviral drugs was beneficial in hospitalized patients, especially when such therapy was initiated early. CONCLUSIONS During the evaluation period, 2009 H1N1 influenza caused severe illness requiring hospitalization, including pneumonia and death. Nearly three quarters of the patients had one or more underlying medical conditions. Few severe illnesses were reported among persons 65 years of age or older. Patients seemed to benefit from antiviral therapy.

1,586 citations