scispace - formally typeset
Search or ask a question
Author

Wendy Westbroek

Bio: Wendy Westbroek is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Glucocerebrosidase & Synucleinopathies. The author has an hindex of 33, co-authored 69 publications receiving 3477 citations. Previous affiliations of Wendy Westbroek include Ghent University Hospital & Children's Hospitals and Clinics of Minnesota.


Papers
More filters
Journal ArticleDOI
TL;DR: This review discusses the main components of LRO biogenesis, and summarizes the function, composition, and resident cell types of the major LROs.
Abstract: Lysosome-related organelles (LROs) are a heterogeneous group of vesicles that share various features with lysosomes, but are distinct in function, morphology, and composition. The biogenesis of LROs employs a common machinery, and genetic defects in this machinery can affect all LROs or only an individual LRO, resulting in a variety of clinical features. In this review, we discuss the main components of LRO biogenesis. We also summarize the function, composition, and resident cell types of the major LROs. Finally, we describe the clinical characteristics of the major human LRO disorders.

350 citations

Journal ArticleDOI
TL;DR: Rab27B regulates invasive growth and metastasis in ER-positive breast cancer cell lines, and increased expression is associated with poor prognosis in humans.
Abstract: BACKGROUND Secretory GTPases like Rab27B control vesicle exocytosis and deliver critical proinvasive growth regulators into the tumor microenvironment. The expression and role of Rab27B in breast cancer were unknown. METHODS Expression of green fluorescent protein (GFP) fused with wild-type Rab3D, Rab27A, or Rab27B, or Rab27B point mutants defective in GTP/GDP binding or geranylgeranylation, or transient silencing RNA to the same proteins was used to study Rab27B in estrogen receptor (ER)-positive human breast cancer cell lines (MCF-7, T47D, and ZR75.1). Cell cycle progression was evaluated by flow cytometry, western blotting, and measurement of cell proliferation rates, and invasion was assessed using Matrigel and native type I collagen substrates. Orthotopic tumor growth, local invasion, and metastasis were analyzed in mouse xenograft models. Mass spectrometry identified proinvasive growth regulators that were secreted in the presence of Rab27B. Rab27B protein levels were evaluated by immunohistochemistry in 59 clinical breast cancer specimens, and Rab3D, Rab27A, and Rab27B mRNA levels were analyzed by quantitative real-time polymerase chain reaction in 20 specimens. Statistical tests were two-sided. RESULTS Increased expression of Rab27B promoted G(1) to S phase cell cycle transition, proliferation and invasiveness of cells in culture, and invasive tumor growth and hemorrhagic ascites production in a xenograft mouse model (n = 10; at 10 weeks, survival of MCF-7 GFP- vs GFP-Rab27B-injected mice was 100% vs 62.5%, hazard ratio = 0.26, 95% confidence interval = 0.08 to 0.88, P = .03). Mass spectrometric analysis of purified Rab27B-secretory vesicles identified heat-shock protein 90alpha as key proinvasive growth regulator. Heat-shock protein 90alpha secretion was Rab27B-dependent and was required for matrix metalloproteinase-2 activation. All Rab27B-mediated functional responses were GTP- and geranylgeranyl-dependent. Presence of endogenous Rab27B mRNA and protein, but not of Rab3D or Rab27A mRNA, was associated with lymph node metastasis (P < .001) and differentiation grade (P = .001) in ER-positive human breast tumors. CONCLUSIONS Rab27B regulates invasive growth and metastasis in ER-positive breast cancer cell lines, and increased expression is associated with poor prognosis in humans.

197 citations

Journal ArticleDOI
TL;DR: Dopaminergic neurons were generated from iPSC lines derived from patients with Gaucher disease with and without parkinsonism, suggesting that noninhibitory small-molecule chaperones of glucocerebrosidase may prove useful for the treatment of Parkinson disease.
Abstract: Among the known genetic risk factors for Parkinson disease, mutations in GBA1 , the gene responsible for the lysosomal disorder Gaucher disease, are the most common. This genetic link has directed attention to the role of the lysosome in the pathogenesis of parkinsonism. To study how glucocerebrosidase impacts parkinsonism and to evaluate new therapeutics, we generated induced human pluripotent stem cells from four patients with Type 1 (non-neuronopathic) Gaucher disease, two with and two without parkinsonism, and one patient with Type 2 (acute neuronopathic) Gaucher disease, and differentiated them into macrophages and dopaminergic neurons. These cells exhibited decreased glucocerebrosidase activity and stored the glycolipid substrates glucosylceramide and glucosylsphingosine, demonstrating their similarity to patients with Gaucher disease. Dopaminergic neurons from patients with Type 2 and Type 1 Gaucher disease with parkinsonism had reduced dopamine storage and dopamine transporter reuptake. Levels of α-synuclein, a protein present as aggregates in Parkinson disease and related synucleinopathies, were selectively elevated in neurons from the patients with parkinsonism or Type 2 Gaucher disease. The cells were then treated with NCGC607, a small-molecule noninhibitory chaperone of glucocerebrosidase identified by high-throughput screening and medicinal chemistry structure optimization. This compound successfully chaperoned the mutant enzyme, restored glucocerebrosidase activity and protein levels, and reduced glycolipid storage in both iPSC-derived macrophages and dopaminergic neurons, indicating its potential for treating neuronopathic Gaucher disease. In addition, NCGC607 reduced α-synuclein levels in dopaminergic neurons from the patients with parkinsonism, suggesting that noninhibitory small-molecule chaperones of glucocerebrosidase may prove useful for the treatment of Parkinson disease. SIGNIFICANCE STATEMENT Because GBA1 mutations are the most common genetic risk factor for Parkinson disease, dopaminergic neurons were generated from iPSC lines derived from patients with Gaucher disease with and without parkinsonism. These cells exhibit deficient enzymatic activity, reduced lysosomal glucocerebrosidase levels, and storage of glucosylceramide and glucosylsphingosine. Lines generated from the patients with parkinsonism demonstrated elevated levels of α-synuclein. To reverse the observed phenotype, the neurons were treated with a novel noninhibitory glucocerebrosidase chaperone, which successfully restored glucocerebrosidase activity and protein levels and reduced glycolipid storage. In addition, the small-molecule chaperone reduced α-synuclein levels in dopaminergic neurons, indicating that chaperoning glucocerebrosidase to the lysosome may provide a novel therapeutic strategy for both Parkinson disease and neuronopathic forms of Gaucher disease.

173 citations

Journal ArticleDOI
TL;DR: It is suggested that the α-syn-GCase association is favored in the lysosome, and that this noncovalent interaction provides the groundwork to explore molecular mechanisms linking PD with mutant GBA alleles.

172 citations

Journal ArticleDOI
TL;DR: It is shown that cancer-cell-derived transforming growth factor-β (TGF-β) is required and sufficient for invasion of myofibroblasts, and a new mechanism in which cancer cells contribute to the coordination of invasion of stromal my ofibro Blasts is identified.
Abstract: Invasion of stromal host cells, such as myofibroblasts, into the epithelial cancer compartment may precede epithelial cancer invasion into the stroma. We investigated how colon cancer-derived myofibroblasts invade extracellular matrices in vitro in the presence of colon cancer cells. Myofibroblast spheroids invade collagen type I in a stellate pattern to form a dendritic network of extensions upon co-culture with HCT-8/E11 colon cancer cells. Single myofibroblasts also invade Matrigel™ when stimulated by HCT-8/E11 colon cancer cells. The confrontation of cancer cells with extracellular matrices and myofibroblasts, showed that cancer-cell-derived transforming growth factor-β (TGF-β) is required and sufficient for invasion of myofibroblasts. In myofibroblasts, N-cadherin expressed at the tips of filopodia is upregulated by TGF-β. Functional N-cadherin activity is implicated in TGF-β stimulated invasion as evidenced by the neutralizing anti-N-cadherin monoclonal antibody (GC-4 mAb), and specific N-cadherin knock-down by short interference RNA (siRNA). TGF-β1 stimulates Jun N-terminal kinase (also known as stress-activated protein kinase) (JNK) activity in myofibroblasts. Pharmacological inhibition of JNK alleviates TGF-β stimulated invasion, N-cadherin expression and wound healing migration. Neutralization of N-cadherin activity by the GC-4 or by a 10-mer N-cadherin peptide or by siRNA reduces directional migration, filopodia formation, polarization and Golgi-complex reorientation during wound healing. Taken together, our study identifies a new mechanism in which cancer cells contribute to the coordination of invasion of stromal myofibroblasts.

163 citations


Cited by
More filters
Journal ArticleDOI
02 Apr 2010-Cell
TL;DR: In addition to their role in extracellular matrix turnover and cancer cell migration, MMPs regulate signaling pathways that control cell growth, inflammation, or angiogenesis and may even work in a nonproteolytic manner.

4,185 citations

Journal ArticleDOI
TL;DR: The data show that exosome production, transfer and education of bone marrow cells supports tumor growth and metastasis, has prognostic value and offers promise for new therapeutic directions in the metastatic process.
Abstract: Tumor-derived exosomes are emerging mediators of tumorigenesis. We explored the function of melanoma-derived exosomes in the formation of primary tumors and metastases in mice and human subjects. Exosomes from highly metastatic melanomas increased the metastatic behavior of primary tumors by permanently 'educating' bone marrow progenitors through the receptor tyrosine kinase MET. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites and reprogrammed bone marrow progenitors toward a pro-vasculogenic phenotype that was positive for c-Kit, the receptor tyrosine kinase Tie2 and Met. Reducing Met expression in exosomes diminished the pro-metastatic behavior of bone marrow cells. Notably, MET expression was elevated in circulating CD45(-)C-KIT(low/+)TIE2(+) bone marrow progenitors from individuals with metastatic melanoma. RAB1A, RAB5B, RAB7 and RAB27A, regulators of membrane trafficking and exosome formation, were highly expressed in melanoma cells. Rab27A RNA interference decreased exosome production, preventing bone marrow education and reducing, tumor growth and metastasis. In addition, we identified an exosome-specific melanoma signature with prognostic and therapeutic potential comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. Our data show that exosome production, transfer and education of bone marrow cells supports tumor growth and metastasis, has prognostic value and offers promise for new therapeutic directions in the metastatic process.

3,076 citations

Journal ArticleDOI
TL;DR: This work introduces a technique—cross-trait LD Score regression—for estimating genetic correlation that requires only GWAS summary statistics and is not biased by sample overlap, and uses this method to estimate 276 genetic correlations among 24 traits.
Abstract: Identifying genetic correlations between complex traits and diseases can provide useful etiological insights and help prioritize likely causal relationships. The major challenges preventing estimation of genetic correlation from genome-wide association study (GWAS) data with current methods are the lack of availability of individual-level genotype data and widespread sample overlap among meta-analyses. We circumvent these difficulties by introducing a technique-cross-trait LD Score regression-for estimating genetic correlation that requires only GWAS summary statistics and is not biased by sample overlap. We use this method to estimate 276 genetic correlations among 24 traits. The results include genetic correlations between anorexia nervosa and schizophrenia, anorexia and obesity, and educational attainment and several diseases. These results highlight the power of genome-wide analyses, as there currently are no significantly associated SNPs for anorexia nervosa and only three for educational attainment.

2,993 citations

Journal Article
TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
Abstract: AACR Centennial Conference: Translational Cancer Medicine-- Nov 4-8, 2007; Singapore PL02-05 All cancers are due to abnormalities in DNA. The availability of the human genome sequence has led to the proposal that resequencing of cancer genomes will reveal the full complement of somatic mutations and hence all the cancer genes. To explore the nature of the information that will be derived from cancer genome sequencing we have sequenced the coding exons of the family of 518 protein kinases, ~1.3Mb DNA per cancer sample, in 210 cancers of diverse histological types. Despite the screen being directed toward the coding regions of a gene family that has previously been strongly implicated in oncogenesis, the results indicate that the majority of somatic mutations detected are “passengers”. There is considerable variation in the number and pattern of these mutations between individual cancers, indicating substantial diversity of processes of molecular evolution between cancers. The imprints of exogenous mutagenic exposures, mutagenic treatment regimes and DNA repair defects can all be seen in the distinctive mutational signatures of individual cancers. This systematic mutation screen and others have previously yielded a number of cancer genes that are frequently mutated in one or more cancer types and which are now anticancer drug targets (for example BRAF , PIK3CA , and EGFR ). However, detailed analyses of the data from our screen additionally suggest that there exist a large number of additional “driver” mutations which are distributed across a substantial number of genes. It therefore appears that cells may be able to utilise mutations in a large repertoire of potential cancer genes to acquire the neoplastic phenotype. However, many of these genes are employed only infrequently. These findings may have implications for future anticancer drug development.

2,737 citations

Journal ArticleDOI
TL;DR: A new method is introduced, stratified LD score regression, for partitioning heritability from GWAS summary statistics while accounting for linked markers, which is computationally tractable at very large sample sizes and leverages genome-wide information.
Abstract: Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here we analyze a broad set of functional elements, including cell type-specific elements, to estimate their polygenic contributions to heritability in genome-wide association studies (GWAS) of 17 complex diseases and traits with an average sample size of 73,599. To enable this analysis, we introduce a new method, stratified LD score regression, for partitioning heritability from GWAS summary statistics while accounting for linked markers. This new method is computationally tractable at very large sample sizes and leverages genome-wide information. Our findings include a large enrichment of heritability in conserved regions across many traits, a very large immunological disease-specific enrichment of heritability in FANTOM5 enhancers and many cell type-specific enrichments, including significant enrichment of central nervous system cell types in the heritability of body mass index, age at menarche, educational attainment and smoking behavior.

1,939 citations