scispace - formally typeset
Search or ask a question
Author

Wenge Zheng

Bio: Wenge Zheng is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Materials science & Electromagnetic shielding. The author has an hindex of 34, co-authored 92 publications receiving 6089 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work provides a promising methodology to fabricate tough and lightweight graphene-PMMA nanocomposite micro cellular foams with superior electrical and EMI shielding properties by simultaneously combining the functionality and reinforcement of the graphene sheets and the toughening effect of the microcellular cells.
Abstract: Functional polymethylmethacrylate (PMMA)/graphene nanocomposite microcellular foams were prepared by blending of PMMA with graphene sheets followed by foaming with subcritical CO2 as an environmentally benign foaming agent. The addition of graphene sheets endows the insulating PMMA foams with high electrical conductivity and improved electromagnetic interference (EMI) shielding efficiency with microwave absorption as the dominant EMI shielding mechanism. Interestingly, because of the presence of the numerous microcellular cells, the graphene−PMMA foam exhibits greatly improved ductility and tensile toughness compared to its bulk counterpart. This work provides a promising methodology to fabricate tough and lightweight graphene−PMMA nanocomposite microcellular foams with superior electrical and EMI shielding properties by simultaneously combining the functionality and reinforcement of the graphene sheets and the toughening effect of the microcellular cells.

954 citations

Journal ArticleDOI
02 Mar 2010-Polymer
TL;DR: Graphene nanosheets were prepared by complete oxidation of pristine graphite followed by thermal exfoliation and reduction in this paper, and the incorporation of graphene greatly improved the electrical conductivity of PET, resulting in a sharp transition from electrical insulator to semiconductor with a low percolation threshold of 0.47 vol.%.

729 citations

Journal ArticleDOI
TL;DR: In this paper, a graphitization of graphite-like graphene oxide (GO) films was used to produce ultrathin thermal conducting materials (TCMs) with the combination of high thermal conductivity and excellent electromagnetic interface (EMI) shielding performance.
Abstract: As the portable device hardware has been increasing at a noticeable rate, ultrathin thermal conducting materials (TCMs) with the combination of high thermal conductivity and excellent electromagnetic interface (EMI) shielding performance, which are used to efficiently dissipate heat and minimize EMI problems generated from electronic components (such as high speed processors), are urgently needed. In this work, graphene oxide (GO) films are fabricated by direct evaporation of GO suspension under mild heating, and ultrathin graphite-like graphene films are produced by graphitizing GO films. Further investigation demonstrates that the resulting graphene film with only approximate to 8.4 mu m in thickness not only possesses excellent EMI shielding effectiveness of approximate to 20 dB and high in-plane thermal conductivity of approximate to 1100 W m(-1) K-1, but also shows excellent mechanical flexibility and structure integrity during bending, indicating that the graphitization of GO film could be considered as a new alternative way to produce excellent TCMs with efficient EMI shielding.

723 citations

Journal ArticleDOI
Bin Shen1, Wentao Zhai1, Mimi Tao1, Jianqiang Ling1, Wenge Zheng1 
TL;DR: This technique is fast, highly reproducible, and scalable, which may facilitate the commercialization of such composite foams and generalize the use of them as EMI shielding materials in the fields of spacecraft and aircraft.
Abstract: Novel high-performance polyetherimide (PEI)/graphene@Fe3O4 (G@Fe3O4) composite foams with flexible character and low density of about 0.28–0.4 g/cm3 have been developed by using a phase separation method. The obtained PEI/G@Fe3O4 foam with G@Fe3O4 loading of 10 wt % exhibited excellent specific EMI shielding effectiveness (EMI SE) of ∼41.5 dB/(g/cm3) at 8–12 GHz. Moreover, most the applied microwave was verified to be absorbed rather than being reflected back, resulting from the improved impedance matching, electromagnetic wave attenuation, as well as multiple reflections. Meanwhile, the resulting foams also possessed a superparamagnetic behavior and low thermal conductiviy of 0.042–0.071 W/(m K). This technique is fast, highly reproducible, and scalable, which may facilitate the commercialization of such composite foams and generalize the use of them as EMI shielding materials in the fields of spacecraft and aircraft.

525 citations

Journal ArticleDOI
TL;DR: It is believed that the strategy for fabricating PGC foams through a simple dip-coating method could potentially promote the large-scale production of lightweight foam materials for EMI shielding.
Abstract: The fabrication of low-density and compressible polymer/graphene composite (PGC) foams for adjustable electromagnetic interference (EMI) shielding remains a daunting challenge. Herein, ultralightweight and compressible PGC foams have been developed by simple solution dip-coating of graphene on commercial polyurethane (PU) sponges with highly porous network structure. The resultant PU/graphene (PUG) foams had a density as low as ∼0.027–0.030 g/cm3 and possessed good comprehensive EMI shielding performance together with an absorption-dominant mechanism, possibly due to both conductive dissipation and multiple reflections and scattering of EM waves by the inside 3D conductive graphene network. Moreover, by taking advantage of their remarkable compressibility, the shielding performance of the PUG foams could be simply adjusted through a simple mechanical compression, showing promise for adjustable EMI shielding. We believe that the strategy for fabricating PGC foams through a simple dip-coating method could p...

412 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations

Journal ArticleDOI
TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
Abstract: Graphene has attracted tremendous research interest in recent years, owing to its exceptional properties. The scaled-up and reliable production of graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), offers a wide range of possibilities to synthesize graphene-based functional materials for various applications. This critical review presents and discusses the current development of graphene-based composites. After introduction of the synthesis methods for graphene and its derivatives as well as their properties, we focus on the description of various methods to synthesize graphene-based composites, especially those with functional polymers and inorganic nanostructures. Particular emphasis is placed on strategies for the optimization of composite properties. Lastly, the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, as well as Raman enhancement are described (279 references).

3,340 citations

Journal ArticleDOI
09 Sep 2016-Science
TL;DR: The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
Abstract: Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.

3,251 citations

Journal ArticleDOI
TL;DR: In this paper, the structure, preparation and properties of polymer/graphene nanocomposites are discussed in general along with detailed examples drawn from the scientific literature, and the percolation threshold can be achieved at a very lower filler loading.

2,999 citations

Journal ArticleDOI
07 Jan 2011-Polymer
TL;DR: A survey of the literature on polymer nanocomposites with graphene-based fillers including recent work using graphite nanoplatelet fillers is presented in this article, along with methods for dispersing these materials in various polymer matrices.

2,782 citations