scispace - formally typeset
Search or ask a question
Author

Wenguang Li

Bio: Wenguang Li is an academic researcher from University of Glasgow. The author has contributed to research in topics: Heat transfer & Solar cell. The author has an hindex of 15, co-authored 50 publications receiving 667 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The surfactant‐free solution methodology, simply using water as a solvent, has been developed for the straightforward synthesis of single‐phase orthorhombic SnSe nanoplates in gram quantities, and offers an energy‐efficient, rapid route to p‐type Sn Se nanostructures.
Abstract: A surfactant-free solution methodology, simply using water as a solvent, has been developed for the straightforward synthesis of single-phase orthorhombic SnSe nanoplates in gram quantities. Individual nanoplates are composed of {100} surfaces with {011} edge facets. Hot-pressed nanostructured compacts (Eg≈0.85 eV) exhibit excellent electrical conductivity and thermoelectric power factors (S2σ) at 550 K. S2σ values are 8-fold higher than equivalent materials prepared using citric acid as a structure-directing agent, and electrical properties are comparable to the best-performing, extrinsically doped p-type polycrystalline tin selenides. The method offers an energy-efficient, rapid route to p-type SnSe nanostructures.

85 citations

Journal ArticleDOI
TL;DR: This study, based on three different healthy volunteers, demonstrates that the parameters of the Holzapfel–Ogden law could be extracted from pressure–volume and strain data with a suitable multi-step optimization procedure.
Abstract: A central problem in biomechanical studies of personalized human left ventricular (LV) modelling is to estimate material properties from in vivo clinical measurements. In this work we evaluate the passive myocardial mechanical properties inversely from the in vivo LV chamber pressure–volume and strain data. The LV myocardium is described using a structure-based orthotropic Holzapfel–Ogden constitutive law with eight parameters. In the first part of the paper we demonstrate how to use a multi-step non-linear least-squares optimization procedure to inversely estimate the parameters from the pressure–volume and strain data obtained from a synthetic LV model in diastole. In the second part, we show that to apply this procedure to clinical situations with limited in vivo data, additional constraints are required in the optimization procedure. Our study, based on three different healthy volunteers, demonstrates that the parameters of the Holzapfel–Ogden law could be extracted from pressure–volume and strain data with a suitable multi-step optimization procedure. Although the uniqueness of the solution cannot be addressed using our approaches, the material response is shown to be robustly determined.

81 citations

Journal ArticleDOI
TL;DR: In this paper, an aqueous solution method is developed for the facile synthesis of Cl-containing SnSe nanoparticles in 10 g quantities per batch, which can be efficiently tuned as a function of reaction duration.
Abstract: An aqueous solution method is developed for the facile synthesis of Cl-containing SnSe nanoparticles in 10 g quantities per batch. The particle size and Cl concentration of the nanoparticles can be efficiently tuned as a function of reaction duration. Hot pressing produces n-type Cl-doped SnSe nanostructured compacts with thermoelectric power factors optimized via control of Cl dopant concentration. This approach, combining an energy-efficient solution synthesis with hot pressing, provides a simple, rapid, and low-cost route to high performance n-type SnSe thermoelectric materials.

59 citations

Journal ArticleDOI
TL;DR: This paper reviews and classifies damage models for soft tissues to summarize achievements, identify new directions, and facilitate finite element analysis.
Abstract: Damage to soft tissues in the human body has been investigated for applications in healthcare, sports, and biomedical engineering. This paper reviews and classifies damage models for soft tissues to summarize achievements, identify new directions, and facilitate finite element analysis. The main ideas of damage modeling methods are illustrated and interpreted. A few key issues related to damage models, such as experimental data curve-fitting, computational effort, connection between damage and fractures/cracks, damage model applications, and fracture/crack extension simulation, are discussed. Several new challenges in the field are identified and outlined. This review can be useful for developing more advanced damage models and extending damage modeling methods to a variety of soft tissues.

58 citations

Journal ArticleDOI
TL;DR: Despite different technical approaches for identifying the relevant period of diastole, the agreement between dPR and iFR and the insensitivity of dPR to minor variations in its definition further confirm numerical equivalency among resting metrics.
Abstract: Aims: The instantaneous wave-free ratio (iFR) and whole-cycle Pd/Pa investigate coronary physiology during non-hyperaemic conditions. To test for unique physiologic properties of the wave-free period when making resting coronary pressure measurements, we compared post hoc a diastolic pressure ratio (dPR) and Pd/Pa against iFR for numerical similarity and test/retest repeatability. Methods and results: Eight hundred and ninety-three lesions from 833 subjects were included from the VERIFY 2 and CONTRAST studies. Diastolic pressure ratio and a linear transform of Pd/Pa were compared against iFR for diagnostic performance. Mean difference between dPR and iFR [Δ = −0.006 ± 0.011, r2 = 0.993, area under receiver operating characteristic (ROC) curve (AUC) = 0.997] mirrored the difference of two iFR measurements repeated immediately (Δ = <0.001 ± 0.004, r2 = 0.998, AUC = 1.00). Minor variations in the definition of dPR changed its value by <1–2% over a broad range of the cardiac cycle. A linear transform of Pd/Pa showed very good diagnostic performance (Δ = −0.012 ± 0.031, r2 = 0.927, AUC = 0.979). Post hoc iFR values were validated against real-time iFR values and matched almost exactly (average Δ = <0.001 ± 0.004, 99.6% within ±0.01). Conclusions: Our dPR offers numerical equivalency to iFR. Despite different technical approaches for identifying the relevant period of diastole, the agreement between dPR and iFR and the insensitivity of dPR to minor variations in its definition further confirm numerical equivalency among resting metrics.

39 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: This review aims to comprehensively summarize the state-of-the-art strategies for the realization of high-performance thermoelectric materials and devices by establishing the links between synthesis, structural characteristics, properties, underlying chemistry and physics.
Abstract: The long-standing popularity of thermoelectric materials has contributed to the creation of various thermoelectric devices and stimulated the development of strategies to improve their thermoelectric performance. In this review, we aim to comprehensively summarize the state-of-the-art strategies for the realization of high-performance thermoelectric materials and devices by establishing the links between synthesis, structural characteristics, properties, underlying chemistry and physics, including structural design (point defects, dislocations, interfaces, inclusions, and pores), multidimensional design (quantum dots/wires, nanoparticles, nanowires, nano- or microbelts, few-layered nanosheets, nano- or microplates, thin films, single crystals, and polycrystalline bulks), and advanced device design (thermoelectric modules, miniature generators and coolers, and flexible thermoelectric generators). The outline of each strategy starts with a concise presentation of their fundamentals and carefully selected examples. In the end, we point out the controversies, challenges, and outlooks toward the future development of thermoelectric materials and devices. Overall, this review will serve to help materials scientists, chemists, and physicists, particularly students and young researchers, in selecting suitable strategies for the improvement of thermoelectrics and potentially other relevant energy conversion technologies.

951 citations

01 Aug 1953
TL;DR: In this paper, a solution for the radius of the vapor bubble as a function of time is obtained which is valid for sufficiently large radius, since the radius at which it becomes valid is near the lower limit of experimental observation.
Abstract: The growth of a vapor bubble in a superheated liquid is controlled by three factors: the inertia of the liquid, the surface tension, and the vapor pressure. As the bubble grows, evaporation takes place at the bubble boundary, and the temperature and vapor pressure in the bubble are thereby decreased. The heat inflow requirement of evaporation, however, depends on the rate of bubble growth, so that the dynamic problem is linked with a heat diffusion problem. Since the heat diffusion problem has been solved, a quantitative formulation of the dynamic problem can be given. A solution for the radius of the vapor bubble as a function of time is obtained which is valid for sufficiently large radius. This asymptotic solution covers the range of physical interest since the radius at which it becomes valid is near the lower limit of experimental observation. It shows the strong effect of heat diffusion on the rate of bubble growth. Comparison of the predicted radius‐time behavior is made with experimental observations in superheated water, and very good agreement is found.

729 citations

Journal ArticleDOI
Mengqi Zeng1, Yao Xiao1, Jinxin Liu1, Kena Yang1, Lei Fu1 
TL;DR: This review will first overview the emerging 2D materials and then offer a clear guideline of varied physical and chemical strategies for tuning their properties and assembly strategies of2D materials will also be included.
Abstract: Two-dimensional (2D) materials have attracted tremendous research interest since the breakthrough of graphene. Their unique optical, electronic, and mechanical properties hold great potential for harnessing them as key components in novel applications for electronics and optoelectronics. Their atomic thickness and exposed huge surface even make them highly designable and manipulable, leading to the extensive application potentials. What's more, after acquiring the qualification for being the candidate for next-generation devices, the assembly of 2D materials monomers into mass or ordered structure is also of great importance, which will determine their ultimate industrialization. By designing the monomers and regulating their assembling behavior, the exploration of 2D materials toward the next-generation circuits can be spectacularly achieved. In this review, we will first overview the emerging 2D materials and then offer a clear guideline of varied physical and chemical strategies for tuning their properties. Furthermore, assembly strategies of 2D materials will also be included. Finally, challenges and outlooks in this promising field are featured on the basis of its current progress.

390 citations

Journal ArticleDOI
TL;DR: In this article, the inherent relationship between the structural characteristics and the thermoelectric performance of tin selenide (SnSe) is discussed, including the thermodynamics, crystal structures, and electronic structures.

389 citations