scispace - formally typeset
Search or ask a question
Author

Wenhuan Huang

Bio: Wenhuan Huang is an academic researcher from University of Science and Technology of China. The author has contributed to research in topics: Phosphorescence & Radical. The author has an hindex of 5, co-authored 11 publications receiving 75 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a series of fluorescent naphthalimides, which did not originally show observable phosphorescence in solution, as aggregates, in polymer films, or in any other tested host material, including heavy-atom matrices at cryogenic temperatures, can now efficiently produce ultralong RTP (ϕ=0.17, τ=243 ms) in phthalimide hosts.
Abstract: Manipulation of long-lived triplet excitons in organic molecules is key to applications including next-generation optoelectronics, background-free bioimaging, information encryption, and photodynamic therapy. However, for organic room-temperature phosphorescence (RTP), which stems from triplet excitons, it is still difficult to simultaneously achieve efficiency and lifetime enhancement on account of weak spin-orbit coupling and rapid nonradiative transitions, especially in the red and near-infrared region. Herein, we report that a series of fluorescent naphthalimides-which did not originally show observable phosphorescence in solution, as aggregates, in polymer films, or in any other tested host material, including heavy-atom matrices at cryogenic temperatures-can now efficiently produce ultralong RTP (ϕ=0.17, τ=243 ms) in phthalimide hosts. Notably, red RTP (λRTP =628 nm) is realized at a molar ratio of less than 10 parts per billion, demonstrating an unprecedentedly low guest-to-host ratio where efficient RTP can take place in molecular solids.

86 citations

Journal ArticleDOI
TL;DR: A working strategy is reported to construct a donor-sp3-acceptor type of luminogen which exhibits aggregation-induced emission (AIE) while the donors' counterpart structure exhibits non-emissive solid state, providing a new insight into the design of multi-component, solid-state RTP materials from organic molecular systems.
Abstract: Organic luminogens with persistent room-temperature phosphorescence (RTP) have found a wide range of applications. However, many RTP luminogens are prone to severe quenching in the crystalline state. Herein, we report a strategy to construct a donor-sp3 -acceptor type luminogen that exhibits aggregation-induced emission (AIE) while the donor-sp2 -acceptor counterpart structure exhibits a non-emissive solid state. Unexpectedly, it was discovered that a trace amount (0.01 %) of the structurally similar derivative, produced by a side reaction with the DMF solvent, could induce strong RTP with an absolute RTP yield up to 25.4 % and a lifetime of 48 ms, although the substance does not show RTP by itself. Single-crystal XRD-based calculations suggest that n-σ* orbital interactions as a result of structural similarity may be responsible for the strong RTP in the bicomponent system. This study provides a new insight into the design of multi-component, solid-state RTP materials from organic molecular systems.

39 citations

Journal ArticleDOI
TL;DR: By simply introducing an sp3 oxygen-bridged methoxylphenyl group as a pendant to BF2 dbm, the boron complex exhibits a triplet quantum yield of 0.16, a more than 100-fold increase compared to that of BF2dbm.

21 citations

Journal ArticleDOI
TL;DR: In this paper, a series of naphthalene diimides with various electron-donor substituents on the nitrogen atoms were used to achieve red room temperature phosphorescence (RTP).

21 citations

Journal ArticleDOI
TL;DR: In this paper, three acceptor moieties were incorporated into a polylactide (PLA)-substituted carbazole donor to generate room-temperature phosphorescent (RTP) materials with different emission colors and lifetimes.
Abstract: Room-temperature phosphorescent (RTP) materials have been widely used in sensing, imaging and display technology. The ability to predict and modulate RTP properties, such as emission color and lifetime, is particularly important for the design of rational materials. Here, we show that by incorporating three different types of acceptor moieties into a polylactide (PLA)-substituted carbazole donor, RTP with different emission colors and lifetimes (with an absolute quantum yield of up to 39.4%) could be generated. Specifically, the chemical conjugation between an n–π* type of luminophore and a π–π* one most likely results in dual RTP while the conjugation between two π–π* types of luminophores produces fluorescence-RTP (F-RTP) dual emission. The consistency between the experimental results and theoretical calculations further validates the observation. To demonstrate the versatility and application potential of these purely organic, biocompatible materials, aqueous nanoparticles were fabricated and used as high-contrast cell imaging agents, given the large Stokes shift of RTP materials.

16 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors analyzed key photophysical processes related to triplet excitons, including intersystem crossing, radiative and non-radiative decay, and quenching processes.
Abstract: Triplet excitons in organic molecules underscore a variety of processes and technologies as a result of their long lifetime and spin multiplicity Organic phosphorescence, which originates from triplet excitons, has potential for the development of a new generation of organic optoelectronic materials and biomedical agents However, organic phosphorescence is typically only observed at cryogenic temperatures and under inert conditions in solution, which severely restricts its practical applications In the past few years, room-temperature-phosphorescent systems have been obtained based on organic aggregates Rapid advances in molecular-structure design and aggregation-behaviour modulation have enabled substantial progress, but the mechanistic picture is still not fully understood because of the high sensitivity and complexity of triplet-exciton behaviour This Review analyses key photophysical processes related to triplet excitons, including intersystem crossing, radiative and non-radiative decay, and quenching processes, to illustrate the intrinsic structure–property relationships and draw clear and integrated design principles The resulting strategies for the development of efficient and persistent room-temperature-phosphorescent systems are discussed, and newly emerged applications based on these materials are highlighted Advances in molecular-structure design and modulation of the aggregation behaviour have enabled much progress in the observation of room-temperature phosphorescence from organic aggregates This Review analyses key photophysical processes related to triplet excitons, illustrating the intrinsic structure–property relationships and identifying strategies to design efficient and persistent room-temperature-phosphorescent systems

552 citations

Journal ArticleDOI
TL;DR: In this article, the main strategies for synthesizing these hybrid materials, namely: (i) inorganics/organics, (ii) organics/ organics, and (iii) organically/polymer systems, are described.
Abstract: Molecular persistently luminescent materials have received recent attention due to their promising applications in optical displays, biological imaging, chemical sensing, and security systems. In this review, we systematically summarize recent advances in establishing persistently luminescent materials—specifically focusing on materials composed of molecular hybrids for the first time. We describe the main strategies for synthesizing these hybrid materials, namely: (i) inorganics/organics, (ii) organics/organics, and (iii) organics/polymer systems and demonstrate how molecular hybrids provide synergistic effects, while improving luminescence lifetimes and efficiencies. These hybrid materials promote new methods for tuning key physical properties such as singlet–triplet excited state energies by controlling the chemical interactions and molecular orientations in the solid state. We review new advances in these materials from the perspective of examining experimental and theoretical approaches to room-temperature phosphorescence and thermally-activated delayed fluorescence. Finally, this review concludes by summarizing the current challenges and future opportunities for these hybrid materials.

244 citations

Journal ArticleDOI
TL;DR: Recently reported heavy-atom-free BODIPY donor-acceptor dyads and dimers which produce long-living triplet excited states and generate singlet oxygen are reviewed.
Abstract: Organic photosensitizers possessing efficient intersystem crossing (ISC) and forming long-living triplet excited states, play a crucial role in a number of applications. A common approach in the design of such dyes relies on the introduction of heavy atoms (e.g. transition metals or halogens) into the structure, which promote ISC via spin–orbit coupling interaction. In recent years, alternative methods to enhance ISC have been actively studied. Among those, the generation of triplet excited states through photoinduced electron transfer (PET) in heavy-atom-free molecules has attracted particular attention because it allows for the development of photosensitizers with programmed triplet state and fluorescence quantum yields. Due to their synthetic accessibility and tunability of optical properties, boron dipyrromethenes (BODIPYs) are so far the most perspective class of photosensitizers operating via this mechanism. This article reviews recently reported heavy-atom-free BODIPY donor–acceptor dyads and dimers which produce long-living triplet excited states and generate singlet oxygen. Structural factors which affect PET and concomitant triplet state formation in these molecules are discussed and the reported data on triplet state yields and singlet oxygen generation quantum yields in various solvents are summarized. Finally, examples of recent applications of these systems are highlighted.

147 citations

Journal ArticleDOI
TL;DR: Taking advantage of the AIE feature, the AIP molecules are fabricated into OLEDs as a homogeneous light-emitting layer, which allows for relatively small efficiency roll-off and shows an external electroluminescence quantum yield of up to 5.8%, more than the theoretical limit for purely fluorescent OLED devices.
Abstract: Aggregation-induced emission (AIE) is a beneficial strategy for generating highly effective solid-state molecular luminescence without suffering losses in quantum yield. However, the majority of reported AIE-active molecules exhibit only strong fluorescence, which is not ideal for electrical excitation in organic light-emitting diodes (OLEDs). By introducing various substituent groups onto the biscarbazole compound, a series of molecular materials with aggregation-induced phosphorescence (AIP) is designed, which exhibits two distinctly different phosphorescence bands and an absolute solid-state room-temperature phosphorescence quantum yield up to 64%. Taking advantage of the AIE feature, the AIP molecules are fabricated into OLEDs as a homogeneous light-emitting layer, which allows for relatively small efficiency roll-off and shows an external electroluminescence quantum yield of up to 5.8%, more than the theoretical limit for purely fluorescent OLED devices. The design showcases a promising strategy for the production of cost-effective and highly efficient OLED technology.

134 citations